

Merycism and Rumination – a comparative view of an evolutionary adaptation and a behavioural disorder

Marcus Clauss

Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland 5. Zürcher Dyphagietagung, 24.-25.01.2014

Clinic of Zoo Animals, Exotic Pets and Wildlife

from Stevens und Hume (1995)

from Stevens und Hume (1995)

• Digestion

- mechanical and chemical breakdown of food into smaller components that can be absorbed
- takes place during the retention in, and passage through, the digestive tract

from Stevens und Hume (1995)

from Stevens und Hume (1995)

- Coprophagy
 - ingestion of regular faeces
 - => normal feeding behaviour ('detritivores')
 - => behavioural mechanism to ensure inoculation of GIT with symbiotic microbes (rare)

=> abnormal behaviour

ingestion of special faeces ('caecotrophs')
 => separation mechanism in the hindgut
 => recycling of bacterial protein
 => near-obligatory in many rodents and

lagomorphs

from Stevens und Hume (1995)

from Stevens und Hume (1995)

- Vomiting
 - involuntary (forceful) expulsion of stomach contents
 => linked to aversive condition (gastritis, poisoning)
 => (does not stop in the mouth)
 - => 'does not stop in the mouth'

• Vomiting

involuntary (forceful) expulsion of stomach contents
 => linked to aversive condition (gastritis, poisoning)
 => 'does not stop in the mouth'

Regurgitation

 voluntary/intentional expulsion of material from mouth/pharynx/ esophagus/stomach

=> transport: feeding young/sharing food

- production of special products in GIT (crops milk in pigeons, bee honey)
- => elimination: indigestible products (pellets/'casting' in carnivorous/piscivorous birds; stomach eversion in sharks)

Crocodile regurgitating

Eagle pellet

Shrike pellet

Owl pellet

Owl pellet

Owl pellet

• Vomiting

involuntary (forceful) expulsion of stomach contents
 => linked to aversive condition (gastritis, poisoning)
 => 'does not stop in the mouth'

Regurgitation

 voluntary/intentional expulsion of material from mouth/pharynx/ esophagus/stomach

=> transport: feeding young/sharing food

- production of special products in GIT (crops milk in pigeons, bee honey)
- => elimination: indigestible products (pellets/'casting' in carnivorous/piscivorous birds; stomach eversion in sharks)

• Vomiting

involuntary (forceful) expulsion of stomach contents
 => linked to aversive condition (gastritis, poisoning)
 => 'does not stop in the mouth'

Regurgitation

 voluntary/intentional expulsion of material from mouth/pharynx/ esophagus/stomach

=> transport: feeding young/sharing food

- production of special products in GIT (crops milk in pigeons, bee honey)
- => elimination: indigestible products (pellets/'casting' in carnivorous/piscivorous birds; stomach eversion in sharks)

=> 'regurgitating artists'

Regurgitators

- 1621 'nail-vomiting boy of Boston'
- 1642 Catharina Geisslerin, the 'toad-vomiting woman of Germany'
- 1694 Theodorus Döderlein (vomiting newts and frogs)
- 1834 Henriette Pfenning (vomiting frogs)
- compulsive swallowers (1927 patient with toothbrushes and disposable razor handles in his stomach)
- Stevie Starr the 'professional regurgitator'

Regurgitators

Stevie Starr The Regurgitator Unofficial Fan Site

Stevie Starr Swallows and Then Regurgitates Things in the Most Amazing Way

Stevie Starr on Czech and Slovak Got Talent (October 2011)!

Stevie Starr

Stevie is in another "Got Talent" competition, this time in the Czech and Slovak <u>Republics</u>. He is in the first round and "everyone loves

him," according to fan Václav C.

In 2010, Stevie made it to the semi-finals on "Britain's Got Talent" as well as on "Das Supertalent," Germany's version of the show.

About The Regurgitator

I first saw "The Regurgitator" (Stevie Starr) on a rerun of the Tonight Show with Jay Leno in 2005, and I decided I needed to make a fan site for him.

Stevie Starr is amazing. I have no idea how he does it and I couldn't find out any more information in a google search.

Human regurgitators

from Stevens und Hume (1995)

from Stevens und Hume (1995)

• Rumination / Merycism

- "to turn over in the mind"
- "to chew the cud"

=> implies regurgitation, chewing, re-swallowing

• Rumination / Merycism

- "to turn over in the mind"
- "to chew the cud"

=> implies regurgitation, chewing, re-swallowing

=> maladaptive in humans as well as certain zoo animals 'rumination syndrome' / 'RR'

Gorilla R/R

Gorilla R/R

A review of nutritional and motivational factors contributing to the performance of regurgitation and reingestion in captive lowland gorillas (*Gorilla gorilla gorilla*)

Kristen E. Lukas *

Applied Animal Behaviour Science 63 (1999) 237-249

Despite findings that provision of browse and removal of fruit from the diet reduces R/R (Loeffler, 1982; Gould and Bres, 1986a; Ruempler, 1992; Wiard, 1992; Velderman, 1997), no one has yet documented the elimination of this behavior from an individual's repertoire. Ruempler (1992), however, reported that one gorilla's R/R had completely ceased for over a year after removing all but huge portions of vegetables and browse (18 kg per adult animal per day) from the diet at Cologne Zoo in Germany. For comparison, an adult male gorilla consumes approximately 6 kg/day at Zoo Atlanta (G. Hamor, personal communication), 13 kg/day at Brookfield Zoo (C. Demitros, personal communication), and 30 kg/day in the wild (*G.g. beringei*, Goodall, 1977). Unfortu-

Removing Milk from Captive Gorilla Diets: The Impact on Regurgitation and Reingestion (R/R) and Other Behaviors

Kristen E. Lukas,^{1,2,3*} Gloria Hamor,³ Mollie A. Bloomsmith,^{2,3} Charles L. Horton,³ and Terry L. Maple^{2,3} Zoo Biol

Zoo Biology 18:515 - 528 (1999)

	Baseline (32 oz milk)	Treatment 32 oz diluted (fruit juice)	Hypothesis test:		
			Baseline (32 oz milk)	baselines vs. treatment	Probability $(\alpha = 0.05)$
Scan data (percentage of t	ime)	22 - 554	742		194 - MA
R/R	5.9%	3.7%	6.3%	F = 8.508	P = 0.010
Eat hay	1.3%	1.6%	0.3%	F = 0.767	ns
Inactive	45.5%	46.6%	46.3%	F = 0.115	ns
Drink water	3.4%	3.3%	2.9%	F = 0.011	ns
Social (affiliative)	8.4%	8.0%	11.7%	F = 1.221	ns
Other undesirable	1.0%	1.2%	2.0%	F = 0.594	ns
Self-directed behavior	17.1%	17.5%	13.9%	F = 1.681	ns
Social (agonistic)	0.1%	0.3%	0.4%	F = 0.136	ns
Other active behavior	16.0%	16.7%	15.0%	F = 0.605	ns
All-occurrence data (no. p	er 5 - min)				
R/R attempts	0.022	0.017	0.011	F = 0.000	ns
R/R bouts	0.428	0.256	0.422	F = 4.684	P = 0.045
Feed on another's regurgitant	0.061	0.061	0.072	F = 0.239	ns
Examine another engaging in R/R	0.056	0.056	0.072	F = 0.221	ns
Agonistic behavior	0.089	0.111	0.233	F = 1.342	ns

 TABLE 6. Comparisons of gorilla behavior between conditions in Phase 2

Chimpanzee R/R

Chimpanzee R/R

An analysis of regurgitation and reingestion in captive chimpanzees

Kate C. Baker^{a,*}, Stephen Phillip Easley^b

Applied Animal Behaviour Science 49 (1996) 403-415

of cagemates or housing history; nor were sex differences detected. Meal composition was not found to effect the time devoted to R/R. Statistical tests did show a strong positive relationship between rates of R/R and elapsed time since feeding. These results suggest that increasing meal frequency or providing consistently available edible material may prove more broadly effective than altering meal composition. Temporal distributions of R/R differed from those of abnormal

old male) (Morgan et al., 1993). That study found that R/R occurred within minutes of each meal, and was most frequent following meals consisting of fruit. Reductions in R/R occurred during behavioral training sessions and when more browse was provided.

Orangutan R/R

Orangutan R/R

Prevalence of Regurgitation and Reingestion in Orangutans Housed in North American Zoos and an Examination of Factors Influencing its Occurrence in a Single Group of Bornean Orangutans

Christine M. Cassella,^{1,2}* Alyssa Mills,¹ and Kristen E. Lukas^{1,2}

0196-206X/86/0705-0314\$02.00/0 DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS Copyright © 1986 by Williams & Wilkins Co.

Vol. 7, No. 5, October 1986 Printed in U.S.A.

Special Articles

Regurgitation in Gorillas: Possible Model for Human Eating Disorders (Rumination/Bulimia)

EDWIN GOULD, PH.D.

Department of Mammalogy, National Zoological Park, Smithsonian Institution, Washington, D.C.

MIMI BRES, M.S.

Department of Biological Sciences, The George Washington University, Washington, D.C.

Rumination disorder in man

MAY 4, 1907.]

MEMORANDA.

Sendal JOURNAL 1053

MERYCISM OR RUMINATION IN MAN. By J. GRANT MILLAR, M.B., CH.B.GLASG.,

BRITISH MEDICAL JOURNAL VOLUME 287 23 JULY 1983

Habitual rumination: a benign disorder

D F LEVINE, D L WINGATE, J M PFEFFER, P BUTCHER

British Journal of Psychiatry (1994), 165, 303-314

Review Article

Merycism or Rumination Disorder A Historical Investigation and Current Assessment

BRENDA PARRY-JONES

 historically: linking to bovine ancestry (incl. autopsies to check for chambered forestomach)

=> 'the mark of the beast' (primitive impulse)

- 6-10 % of institutionalized persons with severe mental retardation
- complications: malnutrition, weight loss, aspiration/choking
 => aspiration cause of death 5-10% of ruminators
- social isolation
- treatment option: ad libitum feeding/satiety

Behavioral Interventions Behav. Intervent. 17: 21–29 (2002)

DECREASING RUMINATION USING A STARCHY FOOD SATIATION PROCEDURE

Laura L. Dudley^{1,2}*, Cammarie Johnson^{1,2}* and R. Scott Barnes¹

0196-206X/86/0705-0314\$02.00/0 DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS Copyright ¹⁰ 1986 by Williams & Wilkins Co.

Vol. 7, No. 5, October 1986 Printed in U.S.A.

Special Articles

Regurgitation in Gorillas: Possible Model for Human Eating Disorders (Rumination/Bulimia)

EDWIN GOULD, PH.D. Department of Mammalogy, National Zoological Park, Smithsonian Institution, Washington, D.C. MIMI BRES, M.S. Department of Biological Sciences, The George Washington University, Washington, D.C.

TABLE 1. Comparison of Regurgitation and Reingestion with Two Human Disorders

	Bulimia	Rumination	r/r Gorilla
Ontogeny			
Failure to engage mother to interact	0	Xi 36,43	х
Age at onset	11-22 yr ⁴⁶	3-6 mo ^{42,43}	> 5 yr
Parental separation	X ⁴⁶	0	Х
Lacks control of eating	X46,50	0	Х
Motor pattern			
Neck swelling	-	X ³	х
Chews	0	X ^{3,7}	х
Mouth fills	0	X ⁷	х
Reingest	0	X7.47-49	х
Valsalva maneuver	Xi	X ²	Xi
Mueller maneuver	Xi	X ⁵	Xi
Rhythmic chest, neck movement	0	X ³⁶	х
Induced with finger	X46,41	X ³⁶	X
No effort required	X ⁴⁶	0	X
Bends deeply prior to vomit ejection	Xi	O ^{47,48}	х
Timing			
Interval between eating and regurgitation	> 1 min ⁴⁶	0-30 min ^{47,48,49}	0-8.3 hr
Interval between regurgitations	0	2-4 min ³	1.5-3 min
Duration of bouts	_	30-60 min ³	2 min - 6 h
Frequency/day	146	15-20/30-6043	1-175
Context			
Do it alone	x	0	х
Favorite foods	0	×	х
Enjoy the taste	0	X2,49	х
Treatment	-		
Reduced if more food	O ⁴⁶	x	х
	-	(one study) ³⁵	(browse)
Increased mother contact		X36	Xi

Definitions

• Rumination / Merycism

- "to turn over in the mind"
- "to chew the cud"

=> implies regurgitation, chewing, re-swallowing

=> maladaptive in humans as well as certain zoo animals 'rumination syndrome' / 'RR'

Definitions

• Rumination / Merycism

- "to turn over in the mind"
- "to chew the cud"

=> implies regurgitation, chewing, re-swallowing

=> maladaptive in humans as well as certain zoo animals 'rumination syndrome' / 'RR'

=> 'bubbling' in certain flies

Fly bubbling

Definitions

• Rumination / Merycism

- "to turn over in the mind"
- "to chew the cud"

=> implies regurgitation, chewing, re-swallowing

=> maladaptive in humans as well as certain zoo animals 'rumination syndrome' / 'RR'

=> 'bubbling' in certain flies

> obligatory mechanism in functional ruminants> probably facultative mechanism in several herbivores

Rumination in ruminants

Rumination in ruminants

Rumination in camelids

Why rumination?

Why rumination?

- Anti-predation strategy
 - "Rumination seems to allow herbivores to ingest in haste and masticate at leisure" (Karasov & Del Rio 2007)
 - => Ruminants should ingest similar amounts of food as other herbivores and just 'chew later' - or become timeconstrained in intake

Anti-predation strategy

- "Rumination seems to allow herbivores to ingest in haste and masticate at leisure" (Karasov & Del Rio 2007)
 - => Ruminants should ingest similar amounts of food as other herbivores and just 'chew later' - or become timeconstrained in intake
- Energy-saving mechanism
 - Rumination occurs in a state of 'drowsiness' similar to rest; may represent an energy-saving strategy less time spent 'wide awake' (Gordon 1968)
 - => Ruminants should have lower energy requirements/higher productivity than other herbivores

Anti-predation strategy

- "Rumination seems to allow herbivores to ingest in haste and masticate at leisure" (Karasov & Del Rio 2007)
 - => Ruminants should ingest similar amounts of food as other herbivores and just 'chew later' - or become timeconstrained in intake
- Energy-saving mechanism
 - Rumination occurs in a state of 'drowsiness' similar to rest; may represent an energy-saving strategy less time spent 'wide awake' (Gordon 1968)

=> Ruminants should have lower energy requirements/higher productivity than other herbivores

- Enhancement of digestive efficiency
 - Rumination reduces particle size and hence allows faster digestion at constant intake

=> Ruminants should have smaller digesta particle sizes (and higher intakes) than other herbivores

Hindgut Fermentation - Caecum

Hindgut Fermentation - Caecum

from Stevens und Hume (1995), Fotos J. Fritz/M. Clauss

Hindgut Fermentation - Colon

Hindgut Fermentation - Colon

Foregut Fermentation

Foregut Fermentation

Photos A. Schwarm/ M. Clauss

Foregut Fermentation - Ruminant

aus Stevens & Hume (1995) Photo Llama: A. Riek

Fermentation <u>after</u> enzymatic digestion and absorption:

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?) (coprophagy)

Fermentation after enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

Fermentation prior to enzymatic digestion and absorption:

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

Fermentation prior to enzymatic digestion and absorption:

<u>Use</u> of bacterial protein, bacterial products (B-Vitamins)

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

Fermentation prior to enzymatic digestion and absorption:

<u>Use</u> of bacterial protein, bacterial products (B-Vitamins)

Bacterial detoxification?

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

Fermentation prior to enzymatic digestion and absorption:

<u>Use</u> of bacterial protein, bacterial products (B-Vitamins)

Bacterial detoxification?

<u>'Loss'</u> of easily digestible substrates and bacterial modification

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

<u>Use</u> of easily digestible substrates

Fermentation prior to enzymatic digestion and absorption:

<u>Use</u> of bacterial protein, bacterial products (B-Vitamins)

Bacterial detoxification?

<u>'Loss'</u> of easily digestible substrates and bacterial modification

Fermentation <u>after</u> enzymatic digestion and absorption:

<u>'Loss'</u> of bacterial protein, bacterial products (B-Vitamins?)

(coprophagy)

<u>Use</u> of easily digestible substrates

European Mammal Herbivores in Deep Time

from Langer (1991)

European Mammal Herbivores in Deep Time

from Langer (1991)

Data from Savage et al. (2004)

rDMI (g/kg^{0.75}/d)

Data overlap from Savage et al. (2004) and Clauss et al. (2007)

Intake and Passage in Primates

Intake and Passage in Primates MRT (h) \diamond \diamond DMI (g/kg^{0.75}/d) simple-stomached with forestomach *◇ Eulemur/Varecia*

Intake and Passage in Primates

Intake and Passage in Primates

Two Preconditions

- It is energetically favourable to digest 'autoenzymatically digestible' components autoenzymatically, not by fermentative digestion.
- 2. Autoenzymatically digestible components are fermented **at a drastically higher rate** than plant fiber.

Low intake ⇒ long passage	
High intake ⇒ short passage	

Low intake ⇒ long passage	Autoenzymatic digestion followed by thorough fermentative digestion	
High intake ⇒ short passage		

Low intake ⇒ long passage	Autoenzymatic digestion followed by thorough fermentative digestion	
High intake ⇒ short passage	Autoenzymatic digestion followed by cursory fermentative digestion	

Low intake ⇒ long passage	Autoenzymatic digestion followed by thorough fermentative digestion	Fermentative digestion followed by autoenzymatic digestion of products (and remains)
High intake ⇒ short passage	Autoenzymatic digestion followed by cursory fermentative digestion	

Low intake ⇒ long passage	Autoenzymatic digestion followed by thorough fermentative digestion	Fermentative digestion followed by autoenzymatic digestion of products (and remains)
High intake ⇒ short passage	Autoenzymatic digestion followed by cursory fermentative digestion	Cursory fermentative digestion mainly of autoenzymatically digestible components followed by ineffective autoenzymatic digestion of undigested fiber?

Low intake ⇒ long passage	Autoenzymatic digestion followed by thorough fermentative digestion	Fermentative digestion followed by autoenzymatic digestion of products (and remains)
High intake ⇒ short passage	Autoenzymatic digestion followed by cursory fermentative digestion	Cursory fermentative digestion mainly of autoenzymatically digestible components followed by ineffective autoenzymatic digestion of undigested fiber?

Intake and Passage

ungulates from Foose (1982) mammal herbivores Clauss et al. (2007)

Intake and Passage

ungulates from Foose (1982) mammal herbivores Clauss et al. (2007)

Intake and Passage

Nonrum. ff appear limited to a low food intake and (hence) long ingesta retention

while hindgut fermenters can cover the whole range

mammal herbivores Clauss et al. (2007)

ungulates from Foose (1982)

European Mammal Herbivores in Deep Time

from Langer (1991)

How can you increase fermentative digestive efficiency?

- Digestion of plant fibre by bacteria is the more efficient ...
 - the more time is available for it
 the longer the mean gastrointestinal retention time.
 - the finer the plant fibre particles arethe finer the ingesta is chewed.

How can you increase energy intake?

• higher food intake

• higher digestive efficiency

How can you increase energy intake?

• higher food intake

longer retention

If you do not sort ...

If you do not sort ...

If you do not sort ...

Ruminant vs. Nonruminant Foregut Ferm<u>entation</u>

Schwarm et al. (2008)

Ruminant vs. Nonruminant Foregut Ferm<u>entation</u>

Schwarm et al. (2008,2009)

Ruminant vs. Nonruminant Foregut Fermentation

Schwarm et al. (2008,2009)

Ruminant vs. Nonruminant Foregut Fermentation

Schwarm et al. (2008,2009)

Ruminant vs. Nonruminant Foregut Fermentation

finer chewing

Intake and Passage

ungulates from Foose (1982)

Intake and Passage

ungulates from Foose (1982)

Intake and Passage

ungulates from Foose (1982)

ungulates from Foose (1982)

aus The Animal Diversity Web - http://animaldiversity.org

Why can 't everyone just chew more?

Chewing in ruminants and nonruminants

Photo A. Schwarm

Chewing in ruminants and nonruminants

Photo A. Schwarm

Chewing in ruminants and nonruminants

Photo A. Schwarm

Chewing in ruminants and nonruminants

Photo A. Schwarm

Chewing in ruminants and nonruminants

Photo A. Schwarm

Chewing in ruminants and nonruminants

Photo A. Schwarm

from Clauss et al. (2010)

European Mammal Herbivores in Deep Time

European Mammal Herbivores in Deep Time

The case of the proboscis monkey

The case of the proboscis monkey

Matsuda et al. (2011)

biology Physiology

Biol. Lett. (2011) 00, 1–4 doi:10.1098/rsbl.2011.0197 Published online 00 Month 0000

Regurgitation and remastication in the foregut-fermenting proboscis monkey (*Nasalis larvatus*)

Ikki Matsuda^{1,*}, Tadahiro Murai¹, Marcus Clauss², Tomomi Yamada³, Augustine Tuuga⁴, Henry Bernard⁵ and Seigo Higashi⁶

Ikki Matsuda · Augustine Tuuga · Chie Hashimoto · Henry Bernard · Juichi Yamagiwa · Julia Fritz · Keiko Tsubokawa · Masato Yayota · Tadahiro Murai · Yuji Iwata · Marcus Clauss

Ikki Matsuda · Augustine Tuuga · Chie Hashimoto · Henry Bernard · Juichi Yamagiwa · Julia Fritz · Keiko Tsubokawa · Masato Yayota · Tadahiro Murai · Yuji Iwata · Marcus Clauss

Ikki Matsuda · Augustine Tuuga · Chie Hashimoto · Henry Bernard · Juichi Yamagiwa · Julia Fritz · Keiko Tsubokawa · Masato Yayota · Tadahiro Murai · Yuji Iwata · Marcus Clauss

Ikki Matsuda · Augustine Tuuga · Chie Hashimoto · Henry Bernard · Juichi Yamagiwa · Julia Fritz · Keiko Tsubokawa · Masato Yayota · Tadahiro Murai · Yuji Iwata · Marcus Clauss

from Stevens und Hume (1995)

430 Foo	THE AUSTRALIAN JOURNAL OF SCIENCE APRIL od Regurgitation in the Macropodidae
	S. BARKER,* G. D. BROWN [†] and J. H. CALABY [*]
	BIOLOGISCHES ZENTRALBLATT
	Band 84 November–Dezember 1965 Heft 6
Verg	gleichende Untersuchung des Wiederkauverhaltens
	Von Hubert Hendrichs ¹)
	Dagegen sah ich folgende Marsupialier wiederkauen:
	Thylogale eugenii (DESMAREST, 1817) Setonix brachyurus (QOUY et GAIMARD, 1830) Dendrolagus ursinus (TEMMINCK, 1836) Dendrolagus ursinus iniustus (MÜLLER, 1840) Protemnodon agilis (GOULD, 1842) Protemnodon rufogrisea (DESMAREST, 1817) Macropus gigantea (ZIMMERMANN, 1777) Macropus (Megaleia) rufus (DESMAREST, 1822) Macropus (Osphranter) robustus (GOULD, 1841).

No distinct stratification of ingesta particles and no distinct moisture gradient in the fore-stomach of non-ruminants: The wallaby, peccary, hippopotamus, and sloth

Angela Schwarm^{a,b,*}, Sylvia Ortmann^a, Julia Fritz^c, Edmund Flach^d, Wolfram Rietschel^e, Marcus Clauss^f Mammalian Biology 78 (2013) 412–421

The case of the capybara

The case of the capybara

from Stevens und Hume (1995)

The case of the capybara

Studies on Neotropical Fauna and Environment Vol. 29 (1994), No. 1, pp. 11-22

A Descriptive Account of Capybara Behaviour

Rexford D. LORD

Regurgitation and Coprophagy. -A significant new finding of this study was observations of capybaras regurgitating and masticating their food while resting, a parallel of rumination among the ruminants such as cattle.

Regurgitation and mastication of food by capybaras was seen only while resting on land, throughout the day, unlike coprophagy which is practised primarily in the morning (Lord 1991, Herrera 1985). Regurgitation is frequently proceeded by a gaping yawn, followed by stretching of the neck, then about a minute of mastication. Sometimes the food material could been seen in the mouth and on occasion spilled out. A young capybara was videotaped eating some spilled regurgitation material from an adult female. The gape yawn may be proceeded by a half role on one side, and/or sitting up. Videotape analysis of this practice has shown the pattern to be somewhat ritualized. It is practised much more frequently than coprophagy, but was probably overlooked because it appears to be a simple yawn.

Leviticus 11 (New International Version NIV) Clean and Unclean Food

11 The Lord said to Moses and Aaron, ² "Say to the Israelites: 'Of all the animals that live on land, these are the ones you may eat: ³ You may eat any animal that has a divided hoof and that chews the cud. ⁴ "'There are some that only chew the cud or only have a divided hoof, but you must not eat them. The camel, though it chews the cud, does not have a divided hoof; it is ceremonially unclean for you. ⁵ The hyrax, though it chews the cud, does not have a not have a divided hoof; it is unclean for you.

BIOLOGISCHES ZENTRALBLATT

Band 84

November-Dezember 1965

Heft 6

Vergleichende Untersuchung des Wiederkauverhaltens

Von HUBERT HENDRICHS¹)

VI. Entdeckung von Wiederkauen bei einer Säugetierordnung

bereiste, schreibt vom "Aschkoko", dem Klippschliefer: "Ich hörte nie einen Laut von ihm, aber er käuet zuverlässig wieder: um dies zu untersuchen unterhielt ich ihn hauptsächlich eine Zeitlang lebendig".

The case of the koala

from Stevens und Hume (1995)

J. Zool., Lond. (2001) 255, 83-87 © 2001 The Zoological Society of London Printed in the United Kingdom

Evidence for the occurrence of rumination-like behaviour, or merycism, in the koala (*Phascolarctos cinereus*, Goldfuss) M. Logan

EFFECT OF TOOTH WEAR ON THE RUMINATION-LIKE BEHAVIOR, OR MERYCISM, OF FREE-RANGING KOALAS (PHASCOLARCTOS CINEREUS)

M. Logan*

Journal of Mammalogy, 84(3):897-902, 2003

The effects of lactation on the feeding behaviour and activity patterns of free-ranging female koalas (*Phascolarctos cinereus* Goldfuss)

M. Logan and G. D. Sanson

Australian Journal of Zoology, 2003, 51, 415-428

The effects of lactation on the feeding behaviour and activity patterns of free-ranging female koalas (*Phascolarctos cinereus* Goldfuss)

M. Logan and G. D. Sanson

Australian Journal of Zoology, 2003, 51, 415-428

Why rumination?

Anti-predation strategy

- "Rumination seems to allow herbivores to ingest in haste and masticate at leisure" (Karasov & Del Rio 2007)
 - => Ruminants should ingest similar amounts of food as other herbivores and just 'chew later' - or become timeconstrained in intake

• Energy-saving mechanism

• Rumination occurs in a state of 'drowsiness' similar to rest; may represent an energy-saving strategy - less time spent 'wide awake' (Gordon 1968)

=> Ruminants should have lower energy requirements/higher productivity than other herbivores

Enhancement of digestive efficiency

 Rumination reduces particle size and hence allows faster digestion at constant intake

=> Ruminants should have smaller digesta particle sizes (and higher intakes) than other herbivores

thank you for your attention

outlook: cheek pouches // coprophagy