

Child of the wilderness ...

... or potato couch? Feeding herbivores in zoos

Marcus Clauss

Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich

mclauss@vetclinics.uzh.ch

Whose zoo animal diet is this?

- strawberries
- mangos
- plums (w/o stones)
- apricots/peaches (w/o stones)
- apples
- pears
- ananas
- leek
- lettuce
- tomatoes
- cooked pasta/cooked rice with raisins
- oat flakes
- dry bread
- yoghurt
- minced meat (1x/week)

Whose zoo animal diet is this?

- strawberries
- mangos
- plums (w/o stones)
- apricots/peaches (w/o stones)
- apples
- pears
- ananas
- leek
- lettuce
- tomatoes
- cooked pasta/cooked rice with raisins
- oat flakes
- dry bread
- yoghurt
- minced meat (1x/week)
- ... and grass hay ad libitum (is hardly eaten)

Whose zoo animal diet is this?

- strawberries
- mangos
- plums (w/o stones)
- apricots/peaches (w/o stones)
- apples
- pears
- ananas
- leek
- lettuce
- tomatoes
- cooked pasta/cooked rice with raisins
- oat flakes
- dry bread
- yoghurt
- minced meat (1x/week)
- ... and grass hay ad libitum (is hardly eaten)

Diet of lowland tapir (Tapirus terrestris) in El Rey National Park,

Salta, Argentina

Silvia C. CHALUKIAN,^{1,4} M. Soledad de BUSTOS^{2,4} and R. Leonidas LIZÁRRAGA^{3,4} Integrative Zoology 2013; 8: 48–56

■ Fruits in feces □ Fibers and leaves in feces

Tapir

Development of zoo feeding regimes

concepts from agriculture (production animals – use **production** potential) human consumption habits

Development of zoo feeding regimes

copying natural diets

avoid diseases – use **adaptation** potential – teaching biological knowledge

Example: rabbit feeds

	Crude fibre NDF (total fibre)		Protein
	% DM	% DM	% DM
meat production	15	38	16
pet animal	15	37	14
in the wild	30	55	20

... pet rabbits are fed like meat-production animals but not like rabbits in their natural habitat!

Example: rabbit feeds

Development of pet feeds

CF %DM NDF %DM Prot %DM

Company A:	Year°			
Rabbit (Standard)	1982	8	26	13
Rabbit 4mm Pellet	1987	10	29	17
Supreme rabbit mix	2000	14	36	14
New Generation (Extrudate)	2006	21	47	16

Company B:

Menu Thyme (Mix)	ca.1980	10	29	11
Rabbit Special Regular Pellet	2000	16	38	14
Emotion Beauty (Extrudate Mix)	2007	14	35	14
Emotion Sensitive (Extrudate Mix)	2007	17	40	14

Year	Recommendation
1980-1993	80% fruits, 19% meat, 1% minerals Fruits: apple, pear, orange, banana, tomato, greens (grass, clover, salad) Meat: muscle, heart – finely cut – also canned dog/cat food If fruits not available: oat flakes, rice, dry dog food, cooked potato

Year	Recommendation
1980-1993	80% fruits, 19% meat, 1% minerals
	Fruits: apple, pear, orange, banana, tomato, greens (grass, clover, salad) Meat: muscle, heart – finely cut – also canned dog/cat food If fruits not available: oat flakes, rice, dry dog food, cooked potato
1999	Leafy green vegetables, vegetables, fruits (apple, banana, pear, grapes, kiwi), sometimes canned dog/cat food, grain products

Year	Recommendation
1980-1993	80% fruits, 19% meat, 1% minerals Fruits: apple, pear, orange, banana, tomato, greens (grass, clover, salad) Meat: muscle, heart – finely cut – also canned dog/cat food If fruits not available: oat flakes, rice, dry dog food, cooked potato
1999	Leafy green vegetables, vegetables, fruits (apple, banana, pear, grapes, kiwi), sometimes canned dog/cat food, grain products
2004-2009	Greens (herbs, low proportion of salad/vegetables), low amounts of fruits (lead to malfermentation and diarrhoea), canned dog/cat food should not be main component (cause gout), milk and grain products only in small amounts, hay always ad libitum, cuttlefish bone/egg shells

Year	Recommendation
1980-1993	80% fruits, 19% meat, 1% minerals Fruits: apple, pear, orange, banana, tomato, greens (grass, clover, salad) Meat: muscle, heart – finely cut – also canned dog/cat food If fruits not available: oat flakes, rice, dry dog food, cooked potato
1999	Leafy green vegetables, vegetables, fruits (apple, banana, pear, grapes, kiwi), sometimes canned dog/cat food, grain products
2004-2009	Greens (herbs, low proportion of salad/vegetables), low amounts of fruits (lead to malfermentation and diarrhoea), canned dog/cat food should not be main component (cause gout), milk and grain products only in small amounts, hay always ad libitum, cuttlefish bone/egg shells

Feeding herbivores

Feeding herbivores

from Stevens und Hume (1995)

Feeding herbivores

plant fibres
 (cellulose,
 hemicellulose) are
 fermented <u>slowly</u>

the VFA can be absorbed as they come

the pH in the fermentation chamber remains stable

plant fibres
 (cellulose,
 hemicellulose) are
 fermented slowly

the VFA can be absorbed as they come

the pH in the fermentation chamber remains stable

 sugars/starch are fermented rapidly
 (some even "explosively⁽¹⁾)

more VFA produced than can be absorbed

the pH in the fermentation chamber drops

plant fibres
 (cellulose,
 hemicellulose) are
 fermented <u>slowly</u>

the VFA can be absorbed as they come

the pH in the fermentation chamber remains stable

more VFA produced than can be absorbed

the pH in the fermentation chamber drops

► ► ACIDOSis !

Man-made diets: too little fibre

- Human nutrition
- Pigs
- Beef cattle/ Dairy cattle
- Riding horses
- Dogs/ Cats
- Zoo animals

Man-made diets: too little fibre

- Human nutrition > gut health
- Pigs → piglet diarrhoea
- Beef cattle/ Dairy cattle
- Riding horses → crib biting
- Dogs/ Cats → faeces consistency
- Zoo animals \rightarrow obesity

Man-made diets: too little fibre

- Human nutrition > gut health
- Pigs > piglet diarrhoea

Beef cattle/ Dairy cattle

- Riding horses → crib biting
- Dogs/ Cats → faeces consistency
- Zoo animals \rightarrow obesity

There are no secret, species-specific ingredients!

A simple way to pretend specialized nutritional knowledge is to produce a pellet, put it in bags of different colours and label (and price) these differently.

Complete feed for rabbits

- maintenance -

Protein	12 %
Fibre	18 %
Calcium	1.2 %

Ingredients: Lucerne meal, soy meal, wheat bran, oats, Calciummonophosphate

Complete feed for rabbits

- maintenance -

Protein	12 %
Fibre	18 %
Calcium	1.2 %

Ingredients: Lucerne meal, soy meal, wheat bran, oats, Calciummonophosphate

Mandrill **Special**® **Supplement** for Mandrills

Especially balanced nutrient composition for this critical species Protein......12 % Fibre.....18 % Calcium.....1.2 %

Grazer-Pellet **Browser-Pellet** Camelid-Pellet **Rhino-Pellet** Elephanten-Pellet Zebra-Pellet Kangaroo-Pellet

Don Delieve names, think for yourself

• 'Frugivores' are adapted to wild fruits but not to commercial produce that has been bred for centuries to please the human palate!

Species	Crude fiber (% dry matter)	NDF (% dry matter)
Duikers (various spp.)		-
Forage	-	25-70
Fruits	-	30-60
Colobus monkeys (different		
species)		
Forages	-	30-70
Fruits	-	50-70
Howler monkey (<i>Alouatta</i>		
aloutta)		
Forages	-	20-80
Fruits	-	20-70

data collected in Clauss & Dierenfeld (2008)

Don believe names, think for yourself

• A large number of nutritional analyses document that 'wild fruit' contain more fibre and less sugar than commercially available fruit (that is the product of selective breeding to please human taste).

What in an apple?

What in an apple?

•85 % water •10 % sugar

What in an apple?

•85 % water •10 % sugar

Fruits

	Water	Rest	protein	available carbohydrates	calcium	phosphorus
	Water	"dry matter"	%		%	
	%	w	dry matter			
Honey	18.6	81.4	0.5	92.3	0.1	0.2
Rock melon	87.0	13.0	6.9	92.5*	0.5	1.6
Water melon	93.2	6.8	8.8	90.5*	1.5	1.6
Ananas	85.3	14.7	3.1	89.3	1.1	0.6
Grapes	81.1	18.9	3.6	85.2	1.0	1.1
Apple	85.3	14.7	2.3	84.3	0.5	0.8
Dried dates	20.2	79.8	2.3	83.1	0.8	0.7
Cherry	82.8	17.2	5.2	82.6	1.0	1.2
Banana	73.9	26.1	4.4	82.0	0.3	1.1
Grapefruit	89.0	11.0	5.5	81.4	1.6	1.5
Pear	84.3	15.7	3.0	80.6	0.6	1.0
Peach	87.5	12.5	6.1	75.5	0.6	1.8
Mango	82.0	18.0	3.3	71.1	0.7	0.7
Plum	83.7	16.3	3.7	70.0	0.9	1.1
Apricot	85.3	14.7	6.1	67.6	1.1	1.4
Gooseberry	87.3	12.7	6.3	66.9	2.3	2.4
Kiwi	83.8	16.2	6.2	66.5	2.3	1.9
Fig	80.2	19.8	6.6	65.2	2.7	1.6
Orange	85.7	14.3	7.0	64.3	2.9	1.6
Strawberry	89.5	10.5	7.8	61.4	2.5	2.8
Black currant	81.3	18.7	6.8	53.3	2.5	2.1
Red currant	84.7	15.3	7.4	48.6	1.9	1.8
Blueberry	84.6	15.4	3.9	47.8	0.6	0.8
Blackberry	84.7	15.3	7.8	46.7	2.9	2.0
Raspberry	84.5	15.5	8.4	44.6	2.6	2.8
Guava	83.5	16.5	5.5	40.6	1.0	1.9
Papaya	87.9	12.1	4.3	19.8	1.7	1.4
Avocado	68.0	32.0	5.9	1.3 (due to high fat content)	0.3	1.2

*minimum

Source: Souci/Fachmann/Kraut "Die Zusammensetzung der Lebensmittel – Nährwert-Tabellen 1989/90". 4. Auflage, Wiss. Verlagsgesellschaft Stuttgart

Vegetables

· · · · · · · · · · · · · · · · · · ·								
	Water	Rest	protein	available carbohydrates	calcium	phosphorus		
		"dry matter"	%		‰			
	%	%		dry m	hatter			
Sweet potato	69.2	30.8	5.3	94.0*	1.1	1.5		
Manioc/Tapioca	63.1	36.9	2.7	86.9	1.0	1.0		
Beetroot	88.8	11.2	13.7	76.9	2.6	4.0		
Potato raw/cooked	77.8	22.2	9.2	69.4	0.4	2.3		
Cucumber	96.8	3.2	18.8	64.7	4.7	7.2		
Tomato	94.2	5.8	16.4	59.5	2.4	4.5		
Pumpkin	91.3	8.7	12.6	54.9	2.5	5.1		
Green beans	90.3	9.7	24.6	54.5	5.9	3.9		
Onion	87.6	12.4	10.1	46.7	2.5	3.4		
Kohlrabi	91.6	8.4	23.1	45.8	8.1	5.9		
Carrot	88.2	11.8	8.3	41.8	3.5	3.0		
Chicoree	94.4	5.6	23.2	41.4	4.6	4.6		
Squash	88.7	11.3	12.4	40.6	2.4	3.8		
Radish	94.4	5.6	18.8	39.6	6.1	4.7		
Aubergine	92.6	7.4	16.8	35.9	1.8	2.9		
Sweet pepper	91.0	9.0	13.0	35.7	1.2	3.2		
Celery stalks	92.9	7.1	16.9	30.7	11.3	6.8		
Cauliflower	91.6	8.4	29.3	30.2	2.4	6.4		
Chinese cabbage	95.4	4.6	25.9	29.1	8.7	6.5		
Leek	89.0	11.0	20.4	29.0	7.9	4.2		
Broccoli	89.7	10.3	32.0	27.4	10.2	8.0		
Zucchini	92.2	7.8	20.5	25.6	3.8	2.9		
Brussels sprouts	85.0	15.0	29.7	25.1	2.1	5.6		
Savoy cabbage	90.0	10.0	29.5	24.1	4.7	5.6		
Lettuce	95.0	5.0	25.0	22.0	7.4	6.6		
Kale/Green cabbage	86.3	13.7	31.4	21.7	15.5	6.4		
Fennel	86.0	14.0	17.4	20.1	7.8	3.6		
Celery root	88.6	11.4	13.6	19.7	6.0	7.0		
Girasole	78.9	21.1	11.6	19.0	0.5	3.7		
Artichoke	82.5	17.5	13.7	16.6	3.0	7.4		
Field salad/Lamb's lettuce	93.4	6.6	27.9	10.6	5.3	7.4		
Mangold	92.2	7.8	27.3	8.8	12.8	5.0		
Spinach	91.6	8.4	30.0	7.3	15.0	6.5		
Parsley	81.9	18.1	24.5	7.2	13.5	7.1		
Endive	94.3	5.7	30.7	5.3	9.5	9.5		

*minimum

Source: Souci/Fachmann/Kraut "Die Zusammensetzung der Lebensmittel – Nährwert-Tabellen 1989/90". 4. Auflage, Wiss. Verlagsgesellschaft Stuttgart

2s 22ui 1922 aF t22u193 s tu1921 i 1992 ar 2s 22aC anus ati 1922 2 222t22191 di

courtesy Tjalling Huisman

... is healthy?

... is healthier than ...

... is healthier than ...

... is healthier than ...

Samuel Clauss (2005) Int J Desper Parents Res 1: 2-7

Samuel Clauss (2005) Int J Desper Parents Res 1: 2-7

There are no studies to date corroborating a positive effect of dietary variety on animal welfare!

There are no studies to date corroborating a positive effect of dietary variety on animal welfare!

Feeding high-sugar/starch diets

Feeding high-sugar/starch diets

Free-range vs. zoo

from Hatt & Clauss (2006)

A survey of African (*Loxodonta africana*) and Asian (*Elephas maximus*) elephant diets and measured body dimensions compared to their estimated nutrient requirements

K. Ange, S.D. Crissey, C. Doyle, K. Lance, H. Hintz Proceedings of the 2001 Conference of the AZA Nutrition Advisory Group 4:5-14

Mean adult female body mass (kg)

	And	
Free-range	2720	2800
Zoo	3453	3375

Fecundity and population viability in female zoo elephants: problems and possible solutions

R Clubb[†], M Rowcliffe[‡], P Lee^{§#}, KU Mar[¶], C Moss[#] and GJ Mason^{**}

Animal Welfare 2009, 18: 237-247

Group/measure	Population		Population difference	Data source/notes	
	In situ	Zoo			
Birth weight	89.5 (± 6.3) kg (n = 5)	102.1 (± 9.6) kg (n = 63)	$F_{1,66} = 8.32, P = 0.005$	Hayssen et al 1993	
	74.0 kg (n = 6)	105.6 kg (n = 40)	Reported in paper as significant	Kurt & Mar 1996 (sexes pooled)	
		118.8 kg (n = 7)	n/a	ISIS 2002 (females only)	

Free-range vs. zoo

from various internet sources and own photo

Free-range vs. zoo

(from Von Houwald 2001)

Feeding high-sugar/starch diets

Easily digestible nutrients absorbed in small intestine => obesity

Only at very excessive amounts: 'caecum acidosis', diarrhoea, laminitis

Tapir faeces

Free range

Tapir faeces

Free range

'traditional' zoo diets

Faecal scores in tapirs

from Clauss et al. (2008)

Faecal scores in tapirs

from Clauss et al. (2008)

Polymerase chain reaction detection of *Clostridium* perfringens in feces from captive and wild chimpanzees, Pan troglodytes

Shiho Fujita¹ & Takashi Kageyama²

J Med Primatol 36 (2007) 25-32

Subject	Sex	Age	Birth	No. of samples tested	First PCR	Nested PCR	Not detected
Ai ¹	Female	24 years	Wild	1	1	0	0
Pendesa	Female	23 years	Captive ²	1	0	0	1
Chloé	Female	19 years	Captive ⁴	4	3	1	0
Reo	Male	18 years	Captive ³	2	0	1	1
Ayumu ¹	Male	5 months		2	1	1	0
Total (%)			50	10	5 (50)	3 (30)	2 (20)

Table 2 Detection of *Clostridiumperfringens* in feces of captivechimpanzees

¹Ai and Ayumu are a mother-infant pair.

²Japan Monkey Center.

³Primate Research Institute.

⁴Parc Zoologique de Paris.

Table 3 Detection of Clostridium per-fringens in feces of wild chimpanzees

Site	Season	No. of samples tested	First PCR	Nested PCR	Not detected
Mahale	Dry	16	0 (0.0) ¹	1 (6.3)	15 (93.7)
	Wet (I and II)	65	0 (0.0)	0 (0.0)	65 (100.0)
	Total	81	0 (0.0)	1 (1.3)	80 (98.7)
Bossou	Dry	23	1 (4.3)	2 (8.7)	20 (87.0)
	Wet	30	5 (16.7)	4 (13.3)	21 (70.0)
	Total	53	6 (11.3)	6 (11.3)	41 (77.4)

¹The values in parentheses show percentages.

Polymerase chain reaction detection of *Clostridium* perfringens in feces from captive and wild chimpanzees, Pan troglodytes

Shiho Fujita¹ & Takashi Kageyama²

J Med Primatol 36 (2007) 25-32

Subject	Sex	Age	Birth	No. of samples tested	First PCR	Nested PCR	Not detected	<i>perfringens</i> in feces of captive chimpanzees
Ai ¹	Female	24 years	Wild	1	1	0	0	
Pendesa	Female	23 years	Captive ²	1	0	0	1	
Chloé	Female	19 years	Captive ⁴	4	3	1	0	
Reo	Male	18 years	Captive ³	2	0	1	1	
Ayumu ¹	Male	5 months	Captive ³	2	1	1	0	_
Total (%)				10	5 (50)	3 (30)	2 (20)	

²Japan Monkey Center.

³Primate Research Institute.

⁴Parc Zoologique de Paris.

Table 3 Detection of Clostridium per-fringens in feces of wild chimpanzees

Site	Season	No. of samples tested	First PCR	Nested PCR	Not detected
Mahale	Dry	16	0 (0.0) ¹	1 (6.3)	15 (93.7)
	Wet (I and II)	65	0 (0.0)	0 (0.0)	65 (100.0)
	Total	81	0 (0.0)	1 (1.3)	80 (98.7)
Bossou	Dry	23	1 (4.3)	2 (8.7)	20 (87.0)
	Wet	30	5 (16.7)	4 (13.3)	21 (70.0)
	Total	53	6 (11.3)	6 (11.3)	41 (77.4)

¹The values in parentheses show percentages.

Polymerase chain reaction detection of *Clostridium* perfringens in feces from captive and wild chimpanzees, Pan troglodytes

Shiho Fujita¹ & Takashi Kageyama²

J Med Primatol 36 (2007) 25-32

Subject	Sex	Age	Birth	No. of samples tested	First PCR	Nested PCR	Not detected	Table 2 Detection of Clostridium perfringens in feces of captive chimpanzees
Ai ¹	Female	24 years	Wild	1	1	0	0	
Pendesa	Female	23 years	Captive ²	1	0	0	1	
Chloé	Female	19 years	Captive ⁴	4	3	1	0	
Reo	Male	18 years	Captive ³	2	0	1	1	
Ayumu ¹	Male	5 months	Captive ³	2	1	1	0	_
Total (%)				10	5 (50)	3 (30)	2 (20)	

¹Ai and Ayumu are a mother-infant pair.

²Japan Monkey Center.

³Primate Research Institute.

⁴Parc Zoologique de Paris.

Table 3 Detection of Clostridium per-fringens in feces of wild chimpanzees

Site	Season	No. of samples tested	First PCR	Nested PCR	Not detected
Mahale	Dry	16	0 (0.0) ¹	1 (6.3)	15 (93.7)
	Wet (I and II)	65	0 (0.0)	0 (0.0)	65 (100.0)
	Total	81	0 (0.0)	1 (1.3)	80 (98.7)
Bossou	Dry	23	1 (4.3)	2 (8.7)	20 (87.0)
	Wet	30	5 (16.7)	4 (13.3)	21 (70.0)
	Total	53	6 (11.3)	6 (11.3)	41 (77.4)

¹The values in parentheses show percentages.

Feeding high-sugar/starch diets

Free-range vs. zoo

from Taylor et al. (2013)

Feeding high-sugar/starch diets

Feeding high-sugar/starch diets

Laminitis Liver abscess Reduced lifespan? Diarrhoea Oral stereotypies

Laminitis

from Nocek (1997) Photos: M. Clauss, W. Zenker

Feeding-related problems - rule of thumb for high-energy feeds

Digestive upset/wasting Obesity elephants rhinos tapirs Equus burchelli) langurs lemurs great apes sloths small ruminants browsing ruminants large grazing ruminants hippos

Primates as a prime example

Low food intake Laminitis Liver abscess Reduced lifespan? Diarrhoea Oral stereotypies

Obesity in primates

- Gorillas (Cousins 1972, Leigh 1992)
- Orangutans: wild ♀ 38.7 kg, ♂ 86.3 kg zoo ♀ up to 81 kg, ♂ up to 189 kg; (Schmidt 2004)
- Chimpanzees: 10.5% ♀♀ obese (Videan et al. 2007)
- Macaques: 7-23% obese

(Walike et al. 1977, Schwartz et al. 1993, Chen at al. 2002)

Marmosets

(Savage et al. 1993, Encarnación & Heymann 1998, Araújo et al. 2000)

Lemurs (Schaaf & Stuart 1983, Schwitzer & Kaumanns 2001, Taylor et al. 2012)

cm

Ó

20

obese lemurs

Primates as a prime example

Does it matter?

Indigestion / Unthriftiness - Wasting

Langurs Sloths

Small ruminants/ Browsing ruminants Obesity

Elephant/ Rhino/ Tapir

Lemurs

Rodents (Carnivores, Bears)

(large ruminants/ grazing ruminants/ hippos)

Does it matter?

Indigestion / Unthriftiness - Wasting

Langurs Sloths

Small ruminants/ Browsing ruminants

Health problems

Elephant/ Rhino/ Tapir

Lemurs

Obesity

Rodents (Carnivores, Bears)

(large ruminants/ grazing ruminants/ hippos)

Does it matter?

Indigestion / Unthriftiness - Wasting		Obesity
		Elephant/ Rhino/ Tapir
Langurs Sloths		Lemurs
		Rodents
Small ruminants/ Browsing ruminants		(Carnivores, Bears)
Haalth problems		(large ruminants/ grazing ruminants/ hippos)
Health problems		
	-	

Obesity in orangutans

Int J Primatol (2007) 28:429-440 DOI 10.1007/s10764-007-9117-9

Leif Cocks

Fig. 12 Survival vs. female weight.

A Survey of Diabetes Prevalence in Zoo-housed Primates

C. W. Kuhar,* G. A. Fuller, and P. M. Dennis

Zoo Biology 32: 63-69 (2013)

Nearly 30% of responding institutions reported at least one diabetic primate in their current collection. Although the majority of reported cases were in Old World Monkeys (51%), all major taxonomic groups were represented. Females represented nearly 80% of the diagnosed cases. A wide variety of diagnosing, monitoring, and treatment techniques were reported. It is clear from these results diabetes should be considered prominently in decisions relating to diet, weight and activity levels in zoo-housed primates, as well as discussions surrounding animal health and welfare.

Hypertension Increases With Aging and Obesity in Chimpanzees (Pan troglodytes)

John J. Ely,* Tony Zavaskis, and Michael L. Lammey

Zoo Biology 32: 79-87 (2013)

Cardiovascular disease is a primary cause of morbidity and mortality in captive chimpanzees. For females, obesity was a significant determinant of BP.

Social Factors Influence Ovarian Acyclicity in Captive African Elephants (*Loxodonta africana*)

Elizabeth W. Freeman,^{1,2*} Greg Guagnano,² Deborah Olson,³ Mike Keele,⁴ and Janine L. Brown¹

Zoo Biology 28:1-15 (2009)

to ovarian acyclicity. Females more likely to be acyclic had a larger body mass index and had resided longer at a facility with the same herdmates. Results suggest that controlling the weight of an elephant might be a first step to helping mitigate estrous cycle problems.

let's show what they evolved to cope with (not what they can stand)

Feeding captive herbivores

- no commercial fruits (they resemble nothing in the wild!)
- wild fruits = green leafy vegetables !
- starch(grain)-based pellets only very limited amounts (better: beet pulp and lucerne meal-based)
- roughage or a variety of roughages (grass hay, lucerne hay, browse, fresh grass, fresh lucerne, silages incl. browse silage)
- minerals (mineralised pelleted feed)
- weight control (scales, body condition score)

Check weight / body condition

Body Condition Index Scores

Diagnostic characters pertaining to scores in

photographic scale.

- All ribs (shoulder to pelvis) visible, some ribs prominent (spaces in between sunken in) Some ribs visible (spaces in between not sunken in), shoulder and pelvic girdles 1 3
- prominent
- 5 Ribs not visible, shoulder and pelvic girdles visible
- Backbone visible as a ridge, shoulder and pelvic girdles not visible Back rounded, thick rolls of fat under neck 7
- 9

If it is difficult to decide between two points on the scale, as the scale is composed of odd numbers, the score represented by the intervening even number is assigned.

Feeding captive herbivores

- Roughages of medium or low feeding value (i.e. 'rough cuts') are suitable for many large zoo herbivores
- hygienic status has to be impeccable

(feeding value ≠ hygienic status)

• If variety is an aim, achieve it by offering different roughages

• in situations of increasing energy/nutrient requirements (e.g. lactation)?

• in situations of increasing energy/nutrient requirements (e.g. lactation)?

'concentrates'?

• in situations of increasing energy/nutrient requirements (e.g. lactation)?

Feeding by weight

• visually estimating amounts often leads to errors

Not every herbivore likes grass hay

from Foose (1982)

Changing a tapir diet I

- strawberries
- mangos
- plums (w/o stones)
- apricots/peaches (w/o stones)
- apples
- pears
- ananas
- leek
- lettuce
- tomatoes
- cooked pasta/cooked rice with raisins
- oat flakes
- dry bread
- yoghurt
- minced meat (1x/week)
- ... and grass hay ad libitum (is hardly eaten)

• <u>morning</u>:

Lucerne hay ad libitum (for the whole day) and one lettuce, one bunch of leek, one bunch of celery stalks handful of pelleted feed (for minerals)

- <u>afternoon (alterating)</u>:
 20 carrots or
 2 pieces of barley sprouts or
 2 cucumbers
- always fresh browse (twigs with leaves)

Changing a tapir diet III

• <u>Alfred Brehm (1864)</u>:

"It always costs them quite an effort to rise up from their inactivity and phlegm."

Changing a tapir diet III

• <u>Alfred Brehm (1864)</u>:

"It always costs them quite an effort to rise up from their inactivity and phlegm."

one year after the diet change: animals did not starve! animals are more active, alert, lively, ingest food (lucerne hay) throughout the day, easier to handle for keepers (more responsive)

animals are less obsese

