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Allometry reminder




Scaling: fundamental (conceptual) relevance
of body mass

Most biologists consider body mass the most
Important characteristic of an organism. It is also
(mostly) easy to measure.

All morphological and physiological fraits scale
somehow with body mass.

"Scaling is interesting because, aside from natural selection, it is one of the few
laws we really have in biology." John Gittleman

An Example of Scaling:
Metabolic Rate
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Allometries
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Allometries

Morphological, physiological and lite history variables
scale with body mass.

Linear scaling: y=aBM!Porlogy=Iloga+ 1.0 BM

Allometric scaling: y =aBMP orlogy=Iloga+bBM

(allometric scaling mostly explained by geometry — e.q. surface-
volume shifts, distribution networks etc.)

6: 24:8=3:1
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Allometries

Morphological, physiological and life history variables
scale with body mass.
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Interpreting allometries

Morphological, physiological and life history variables
scale with body mass.
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Interpreting allometries

Morphological, physiological and life history variables
scale with body mass.
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Interpreting allometries

Morphological, physiological and life history variables
scale with body mass.
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often interpreted as @
‘biological law’ (based on
physical principles).
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Testing for allometries

Morphological, physiological and life history variables
scale with body mass.
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Testing for allometries

OLs P=1.00 slope (exponent) =0

infercept = constant
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Trait B

Trait A



Testing for allometries

OLS P <0.001 slope (exponent) =
D (95%Cl b-1.96SE; b+1.96SE)

iIntercept =
A (95%Cl a-1.96SE; a+1.96SE)

Trait B

Trait A
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Using allometries

Using allometric relationships to extrapolate data for
other species.

Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus)
fed a hay-only diet: Implications for the scaling of methane production with body
mass in non-ruminant mammalian herbivores
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Using allometries

Using allometric relationships to extrapolate data for
other species.
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Differences in allometric relationships between animal
groups can explain different ecological scenarios.
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Using allometries

Differences in allometric relationships between animal
groups can explain different ecological scenarios.

lettals  mommoms Ecological modelling, size distributions
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Comparative statistics

Conventional regression analysis assumes
independence of data points.
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Comparative statistics

Conventional regression analysis assumes
iIndependence of data points.
But this is violated by phylogenetic relationships.
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Comparative statistics

Conventional regression analysis assumes
iIndependence of data points.
But this is violated by phylogenetic relationships.

Therefore, we perform allometric analyses also with
accounting for phylogeny, using PGLS (Phylogenetic
Generalized Least Squares).




Comparative statistics

Conventional regression analysis assumes
iIndependence of data points.
But this is violated by phylogenetic relationships.

Therefore, we perform allometric analyses also with
accounting for phylogeny, using PGLS (Phylogenetic
Generalized Least Squares).

Results mostly did not differ from conventional
statistics in a relevant way, but the intensive use of
comparative statistics (also with additional examples)
led to formulation of some concepts new to
ourselves.
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Comparative statistics

Three (of many) important test stafistics:

Intercept a: mainly significant if 95%CI| does not
include O

Slope b: significant if 95%CI| does not include 0;
indicates non-linearity if 25%CI does not include 1

Pagel's lambdaA: if 95%Cl includes O, then there is no
phylogenetic structure in the dataset.

Does not decide whether the relationship is
significant or not, but whether phylogenetic statistics

need fo be used or not.
Assumes Brownian motion; other measures of phylogenetic structure
assuming other evolutionary scenarios exist.
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Comparative statistics - errors

Type | error: you find a relationship where there is

none (but it is caused by the phylogenetic structure
of the datq)

Type Il error: you overlook a relationship where there
Is one (evident when you account for the
phylogenetic structure of the data)

Just an error: you estimate a different parameter
(e.q., allometric slope) depending on whether you
account for phylogeny or not




Pagel's lambda( A) examples




Accounting for phylogeny
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Accounting for phylogeny

A=0
OLS P=1.00

|
PGLSP=1.00  NO€mor

o —eo——e=

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

OLS P=1.00

Trait B
¢
¢
4

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

OLS P=1.00

o0 00O

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

OLS P=1.00

o0 oo o

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

OLS P=1.00

o0 oo o

T,

Trait A

Trait B

from Dittmann et al. (2015)



Accounting for phylogeny

OLS P=1.00

o0 oo o

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

PGLS P =1.00

oo o

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny

A=
PGLS P =1.00

oo o

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny
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Accounting for phylogeny

A=1
() 2. =.1.00

|
PGLS P =1.00) ne efror

Trait B

Trait A

from Dittmann et al. (2015)



Accounting for phylogeny
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Accounting for phylogeny
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Accounting for phylogeny
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Accounting for phylogeny

A=1
OLS P <0.001
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Accounting for phylogeny
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Example |: gut contents
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Accounting for phylogeny

Trait B
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Accounting for phylogeny
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Accounting for phylogeny

A=1

no errorl! OLS *

no difference in 95%ClI for
intercept or slope expected

Trait B

Trait A

from Clauss et al. (2013)



Example |: gut contents
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Example Il: basal metabolic rate
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@ oLs+

7’
-

Trait B
\
Iy
I
1\
\
4
o
\
\
o

Trait A

from Clauss et al. (2013)



Accounting for phylogeny
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Accounting for phylogeny
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Accounting for phylogeny
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Example Il: basal metabolic rate
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Example Il: basal metabolic rate
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Example lll: retention/digestibility

0.1 5
= o
O
s 0.05 1 % o
o O
a 5 .
o)
§ 0 - B g © O
:9 O O
v (m] [} 0
& -0.05 -
=0). U =
0
M
'0.1 T T T T T 1
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Residual MRT

from MuUller et al. (2013)



Accounting for phylogeny
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Accounting for phylogeny
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Accounting for phylogeny
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Accounting for phylogeny

A =1 . OLS*
oo o
o) /,/,
A L’
O
— e
® O O
Trait A

from Clauss et al. (2013)



Accounting for phylogeny
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Example llla: retention/digestibility
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Example llib: fecal particle size
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Accounting for phylogeny
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Table 2 Result of comparative analyses of how minimum prey size varies as a function of predator size

Body mass (kg, mode, range)

Taxonomic group/biome  n Predator Prey Stat A* a (95% CI) t P b (95% CI) t P
Terrestrial mammals 270 0.112 (0.002-371) 0.0001 (0.000001-189) OLS (0) 0.007 (0.004; 0.010) -22456 0.000 1.05 (0.90; 1.20) 13709 0.000
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Taxonomic group/biome  n Predator Prey Stat A* a (95% CI) t P b (95% CI) t P
Terrestrial mammals 270 0.112 (0.002-371) 0.0001 (0.000001-189) OLS (0) 0.007 (0.004; 0.010) -22456  0.000 1.05 (0.90; 1.20) 13709  0.000
PGLS!  0929°  0.0003 (0.00001; 0.013) -4276  0.000 0.82 (0.60; 1.03) 7381 0.000
PGLST 10t 0.0001 (0.00001; 0.001) -7923  0.000 0.36 (0.15; 0.57) 3293 0.001
Marine Mammals 126 23000 (4-154160) 0.100 (0.00003-12) OLS (0) 0.546 (0.215; 1.386) -1274 0205 -0.30 (-045;-0.15) -3975 0.000
PGLST 0978 0.013 (0.001; 0.232) -2940 0.004 0.16 (-0.13; 0.44) 1.054 0294
P o .

. - Ke)
. & o B

the difference ,e
between the OLS and PGLS results within the marine mam-2 ©
mals indicates that there are not multiple taxonomic sub-
groups in which the relationship can be observed, but that“ o ‘%
small-prey (filter) feeding evolved only once (Slater et al.

2010). 2 [
o '6.0060011 Tt . S

0.0000001 - — T T T T T T T )
0.001 o0.01 0.1 1 10 100 1000 10000 1000001000000
Predator Mass (kg)

from Carbone et al. (2014)
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wider SE or 95%ClI for intercept

but narrower one for slope
expected in PGLS
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Low scaling of a life history variable: Analysing eutherian gestation periods with
and without phylogeny-informed statistics
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A deadly sin ¢

REVIEW
The seven deadly sins of comparative analysis

R. P. FRECKLETON J. EVOL. BIOL. 22 (2009) 1367-1375
Reporting both Pl and PC analyses

Frequently, both across-species and phylogenetically
corrected analyses of the same data are reported simul-
taneously. This is despite the fact that the two forms of
analysis make very different assumptions about the
distribution of the data.



A deadly sin e = No !

REVIEW
The seven deadly sins of comparative analysis

R. P. FRECKLETON J. EVOL. BIOL. 22 (2009) 1367-1375

Reporting both Pl and PC analyse

, both across-species
corrected a
taneously. This is
analysis
disig

phylogenetically
ata are reported simul-
fact that the two forms of
very different tions about the
ion of the data.

A comparison of OLS and PGLS results is an
iImportant tool for understanding the structure of
the datal (irrespective of which is the ‘correct’
one) because the two make very different
assumptions about the data



Directionality in Evolution:

Allomeftries as snapshofs in
evolutionary time




Directionality in Evolution:

beware of the natural fallacy
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J. Dairy Sci. 89:1280-1291

© American Dairy Science Association, 2006.

Major Advances in Nutrition: Relevance to the Sustainability

of the Dairy Industry

M. J. VandeHaar*' and N. St-Pierret

8,000 1
6,000 ¢
4,000 ¢

2,000 ¢

0---:---

Average milk yield per cow (kg/yr)

1900 1920 1940 1960 1980 2000

Year




BEITAN TN TR

This chick was This chick was vaccinated
4x as likely to die against disease and will be under
during its first the care of a veterinarian its
7 daysthanits whole life

ORI

42g

This chicken used This chicken lives in a climate-
2x as much feed, controlled barn, protected from
land, water and fuel predators and is fed by a
to produce 1lb certified nutritionist

of meat
("', f A 2 y
A
632g

316g

This chicken still This chicken was bred to have
has 12 days until strong legs, has never been given
it's market-ready, hormones and can feed six people.
and could only

feed 2 people
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Energy per km

Time per offspring

You would not consider
the overall pattern a fixed
law, but consider it with
respect to technical
progress.

Why would you consider
this a pattern due to fixed
life history tradeoff laws,
and not rather a
snapshot in a process of
opftimization?




Some simple a priori assumptions
and their consegquences
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A priori conditions and their consequences

Life requires input of resources.
Life starts simple (non-complex).
Life means reproduction.
- spontaneously occurring yet heritable variability
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The Tendency for Diversity & Complexity
to Increase in Evolutionary Systems

BIOLOGY’S FIRST LAW
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Resources are finite.

now what?
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A NEW EVOLUTTONARY LAW

Leigh Van Valen

The Red Queen's Hypothesis (32)

(32). "Now here, you see, it takes all the running you can do, to keep in the
same place." (L. Carroll, Through the Looking Glaess.)

Evol. Theory 1:1-30 (July 1973)




‘Evolutionary progress’ — directional evolution

Proc. R. Soc. Lond. B 205, 489-511 (1979) 489
Printed in Great Britain

Arms races between and within species

By R. DaAwkiIns aNxD J. R. KrREBS

reverse as to continue the previous one. But in fact consistent directionality is
introduced because the environment of any one evolving lineage includes other
evolving lineages. Above all, it is because adaptations in one lineage call forth
counter-adaptations in others, setting in motion the unstable evolutionary
progressions we call arms races.




‘Evolutionary progress’ — directional evolution

-S4

The crab is the
natural predator
of the snail.

Natural selection favors
snails with thicker shells
and spines.

Through natural selection, In response, natural selec-
crabs evolve more powerful tion favors snails with even
claws that can pierce the thicker shells and spines.

snails’ thick, spiny shells.
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Amul views. Organisms have been important agents of selection throughout the history

of life. The processes and outcomes of this selection are the subject of this
review. Among these, escalation is the most widespread. The primary selec-
tive agents are powerful competitors and consumers, which together push
many populations toward higher performance in acquiring and defending re-
sources while relegating less competitive species to physiologically marginal
settings, where escalation also ensues. The extent to which performance
dards rise depends on g factors, which control availability of and
access to resources. By csubllslnng positive feedbacks between species and
enabling factors, effective competitors regulate and enhance resource sup-
ply. The pace of escalaton toward greater power and reach is dictated by
geological factors as well as by growing interdependencies between species
and their resources. Evolutionary events on land related to the production
of oxygen may have been instrumental in eriggering the major episodes of

escalation.
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Are condifions stable enough so that the
direction of a Darwinian Demon is always the
samese
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The Red Queen and the Court Jester:
Species Diversity and the Role of Biotic
and Abiotic Factors Through Time

Michael ]. Benton FEBRUARY 2009 VOL 323 SCIENCE
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A priori conditions and their consequences

Resources are finite.




A priori conditions and their consequences

Resources are finite.

will ‘survivors’

have something
in common?




‘Evolutionary progress’ — directional evolution

Biol. Rev. (1987), 62, pp. 305-338

PROGRESS AND COMPETITION IN MACROEVOLUTION
By MICHAEL J. BENTON

It is merely a tau-tology to identify the later animal (the ‘Winner’)
as a ‘superior competitor’ in the absence of any other evidence (Schopf, 1979).

_ it is hard to envisage a constant competitive advantage that lasted so long and
persistently favoured all of the species of one large taxon against all of the species of
another in all environments.



Darwinian evolution is a set of rules where the
one consfant (demographic) selective
pressure is to outfreproduce competitors.

In the presence of competitors, Darwinian
selection should always go in the of
a ‘Darwinian Demon’.
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Darwinian demon

i

An organism that starts reproducing directly affer birth, producing a
large number of surviving offspring at extreme speed without ever

dying.
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Darwinian demon l

An organism that starts reproducing directly affer birth, producing a
large number of surviving offspring at extreme speed without ever

dying.
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Darwinian demon l

An organism that starts reproducing directly affer birth, producing a
large number of surviving offspring at extreme speed without ever

dying.
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A priori conditions and their consequences

Resources are finite.

Probabilistic
directionality lll:

fowards faster
reproduction




Interpreting scaling

Morphological, physiological and lite history variables

scale.
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Morphological, physiological and lite history variables

scale.
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Interpreting scaling

Morphological, physiological and life history variables

scale.

[
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The question is:

What factors influence the
scatter of the data?

The underlying fundamental
question is:

What are the causes (and
patterns) of diversity?
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Interpreting scaling

Morphological, physiological and lite history variables

scale.

[
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Traditional approach:
Deviations from the regression
line are interpreted as
adaptations (e.g. to specific
resources or habitats).
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Interpreting scaling

Morphological, physiological and lite history variables

scale.

Specific
niche where
high relative

° y is
° adaptive.
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Interpreting scaling

Morphological, physiological and lite history variables

scale. Specific
niche where
high relative
° y is
° adaptive.
o
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® ® - Traditional approach:
e 2 o o Deviations from the regression
o line are interpreted as
N ° adaptations (e.g. to specific
Specific resources or habitats).
nichewher
low relative
y is X

adaptive.




Life history scaling

A lifestyle view of life-history evolution

F. Stephen Dobson* PNAS | November 6,2007 | vol. 104 | no.45 | 17565-17566
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Effects of body size and lifestyle on
evolution of mammal life histories

Richard M. Sibly*™ and James H. Brown?*s1
PNAS | November 6,2007 | vol. 104 | no.45 | 17707-17712
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Fig. 4. The two major axes of the slow-fast life-history continuum, body
mass, and lifestyle. To the well known axis of allometric variation due to body
size, we have added a second orthogonal axis based on ecological lifestyle.
Here thesolid line represents an unspecialized ancestral condition, the dashed
line depicts a more productive “live fast die young” lifestyle, and the dotted
line shows a lifestyle with a lower death rate, slower life history, and conse-
quently lower production.




Interpreting scaling

Is there a systematic phylogenetic structure in the
datasete
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Is there a systematic phylogenetic structure in the
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Interpreting scaling

Is there a systematic phylogenetic structure in the

dataset?e

T

More recently radiated taxa
have a lowery. Is evolution
‘directed’ towards low y¢




Interpreting scaling

Is there a systematic phylogenetic structure in the
datasete
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Interpreting scaling

Is there a systematic phylogenetic structure in the
datasete
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Interpreting scaling

Is there a systematic phylogenetic structure in the
datasete
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Interpreting scaling

Is there a systematic phylogenetic structure in the
datasete
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Interpreting scaling: snapshots

Is there a systematic phylogenetic structure in the
datasete
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In this scenario, the scaling is a
snapshot in evolutionary time.
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Energy per km

Time per offspring

You would not consider
the overall pattern a fixed
law, but consider it with
respect to technical
progress.

Why would you consider
this a pattern due to fixed
life history tradeoff laws,
and not rather a
snapshot in a process of
opftimization?




Assessing
‘direction’/ /escalation/progress

N life history

using the PanTheria dataset
(Jones et al. 2009)




Niche-specific assessment

Because niche space is less diverse at larger body sizes, large
herbivores may be a particularly fruitful area of research for
‘directed evolution’.
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Niche-specific assessment

Because niche space is less diverse at larger body sizes, large
herbivores may be a particularly fruitful area of research for
‘directed evolution’.
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A clear picture for gestation length
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(Precocial) Mammal gestation period

For any mammal, achieving the same degree of neonatadl
development in a shorter gestation period — if not associated with
higher costs — should be advantageous (higher fecundity due to
shorter generation times).

Days of gestation period (to apparently similar level of

precociality)
Cattle: app. 280 days
Horse: app. 340 days

Dromedary: app. 390 days
Okapi: app. 440 days




(Precocial) Mammal gestation period

For any mammal, achieving the same degree of neonatal
development in a shorter gestation period — if not associated with
higher costs — should be advantageous (higher fecundity due to
shorter generation fimes).

Days of gestation period (to apparently similar level of
precociality)

Cattle: app. 280 days
Horse: app. 340 days
Dromedary: app. 390 days
Okapi: app. 440 days

The difference cannot be due to body size!
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(Precocial) Mammal gestation period

For any mammal, achieving the same degree of neonatadl
development in a shorter gestation period — if not associated with
higher costs — should be advantageous (higher fecundity due to
shorter generation times).
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(Precocial) Mammal gestation period

For any mammal, achieving the same degree of neonatal
development in a shorter gestation period — if not associated with
higher costs — should be advantageous (higher fecundity due to
shorter generation times).

Days of gestation period (to apparently similar level of

precociality)
Cattle: app. 280 days “ rule the world !l
Horse: app. 340 days -

Dromedary: app. 390 days
Okapi: app. 440 days




Clear effect for yearly offspring
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A clear picture for intrauterine growth
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Summary, Conclusions & Outlook

Rather than understanding tfradeoffs along the fast-slow
continuum as fixed physical laws, they can be considered as
representing the efficiency of the organisms from which the
data was taken — and that efficiency may evolve.
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Summary, Conclusions & Qutlook

Rather than understanding tfradeoffs along the fast-slow
continuum as fixed physical laws, they can be considered as
representing the efficiency of the organisms from which the
data was taken — and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly
compete by demographic means: by evolving a faster
reproduction.

Life history characteristics appear to be linked to taxonomic
groups.




The inferesting question ...

... what allowed the remaining extant species of the
‘slower’ taxa to survivee |




Summary, Conclusions & Qutlook

Rather than understanding tfradeoffs along the fast-slow
continuum as fixed physical laws, they can be considered as
representing the efficiency of the organisms from which the
data was taken — and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly
compete by demographic means: by evolving a faster
reproduction.

Life history characteristics appear to be linked to taxonomic
groups.

We would predict that during earth history, ‘faster’ species were
not replaced by ‘slower’ species.



Application: large herbivore diversity through
time

Historical Bislogy, 1994, Val. 8, pp. 15-29 © 1994 Harwood Academic Publishers GmbH
Reprints available directly from the peblisher Printed in Malaysia
Photocopying available by license only

MODELLING EQUID/RUMINANT COMPETITION IN
THE FOSSIL RECORD

CHRISTINE M. JANIS', JAIN J. GORDON? and ANDREW W. ILLIUS?

'Department of Ecology and Evolutionary Biology, Brown University, Providence,
Rhode Island 02912, USA
*Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB9 2QY, UK
ISchool of Agriculture, University of Edinburgh, West Mains Road,
Edinburgh EH9, 3JG, UK

(Received November 2, 1993)

BodyMass 30 kg. SOkg. 100kg. 150kg. 200kg. 250 kg, 300 kg 400 kg. 500 kg.
EARLY e Vs ' .
ARIKAREEAN %
u“ " an ar " . el
ARIKAREEAN W h %
EARLY R " "
HEMINGFORDIAN
LATE ar T " " TS 'Y .
HEMINGFORDIAN,
—

Early Miocene

. “ ) -

EARLY
BARSTOVIAN ﬁ Il

| s 1o

LATE
BARSTOVIAN ﬂ‘

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE [0
HEMPHILLIAN

Figure 3 Body size distribution of browsing Miocene equids and ruminants. Key to ungulate taxa:
A, Color of taxon: Striped horses=Mesohippines; white horses=Anchitherines; spotted horses=Hypohippines;
black artiodactyls=Pecorans; cross-hatched artiodactyls=Tylopods.




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

EARLY
ARIKAREEAN

LATE
ARIKAREEAN

EARLY
HEMINGFORDIAN

EARLY MIOCENE

LATE
HEMINGFORDIAN

MIDDLE MIOCENE

EARLY
BARSTOVIAN

LATE
BARSTOVIAN

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

o o | Y |

LATE
ARIKAREEAN

EARLY
HEMINGFORDIAN

EARLY MIOCENE

LATE
HEMINGFORDIAN

MIDDLE MIOCENE

EARLY
BARSTOVIAN

LATE
BARSTOVIAN

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

oy o | o |
,LA’;‘(T}EAREEAN " h d h w

EARLY
HEMINGFORDIAN

EARLY MIOCENE

LATE
HEMINGFORDIAN

MIDDLE MIOCENE

EARLY
BARSTOVIAN

LATE
BARSTOVIAN

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

en | AW M
e | mm A W
s o] WA ot | AW

LATE
HEMINGFORDIAN

EARLY MIOCENE

MIDDLE MIOCENE

EARLY
BARSTOVIAN

LATE
BARSTOVIAN

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

o e | AW W | W
e | mm My YW
seorom] WAEm | AW
o § mel

HEMINGFORDIAN m” N

EARLY
BARSTOVIAN

EARLY MIOCENE

MIDDLE MIOCENE

LATE
BARSTOVIAN

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

o e | AW W | W
e | mm My YW
seorom] WAEm | AW
o § mel

HEMINGFORDIAN m” N

o | At MmN

LATE
BARSTOVIAN

1

MIDDLE MIOCENE  EARLY MIOCENE

EARLY
CLARENDONIAN

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.
£h W M
ARIKAREEAN
LATE
ARIKAREEAN N

o
EAE;LIT\IGFORDIAN ™ ﬁ m e ﬁ‘ hm
o § mxer

HEMINGFORDIAN mh‘ N

o | A m AWMNA AT
7 i oM AW

EARLY
CLARENDONIAN

MIDDLE MIOCENE  EARLY MIOCENE

LATE
CLARENDONIAN

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

THE FOSSIL RECORD
CHRISTINE M. JANIS!, IAIN J. GORDON? and ANDREW W. ILLIUS?
Historical Biology, 1994, Vol. 8, pp. 15-29

Body Mass 30kg. 50kg. 100kg.  150Kkg. 200.kg. 250kg. 300kg. 400kg.  500kg.

o e | AW W | W
e | mm My YW
seorom] WAEm | AW
o § mel

HEMINGFORDIAN m” N

o | A Yy AAWMNA AT
7 kx| m
oo mw o

LATE
CLARENDONIAN

MIDDLE MIOCENE  EARLY MIOCENE

™

EARLY
HEMPHILLIAN

LATE MIOCENE

LATE
HEMPHILLIAN

from Janis et al. (1994)]




MODELLING EQUID/RUMINANT COMPETITION IN

CHRISTINE M. JANIS!, JAIN J. GORDON? and ANDREW W. ILLIUS?®

Body Mass 30kg.

EARLY
ARIKAREEAN

Any

THE FOSSIL RECORD

Historical Biology, 1994, Vol. 8, pp. 15-29

50kg.

oY

100kg.

150kg.

200.kg.

250kg.

300Kg.

400kg.

500Kg.

LATE
ARIKAREEAN

m %

EARLY
HEMINGFORDIAN

™R

LATE
HEMINGFORDIAN

mm n

o
.l
.l

EARLY
BARSTOVIAN

kel

LATE
BARSTOVIAN

ol

EARLY
CLARENDONIAN

N

LATE
CLARENDONIAN

=
PR
4]

~

EARLY
HEMPHILLIAN

LATE
HEMPHILLIAN

fror

m Janis

STOL(]994L

MIDDLE MIOCENE  EARLY MIOCENE

LATE MIOCENE



Summary, Conclusions & Outlook

Rather than understanding tfradeoffs along the fast-slow
continuum as fixed physical laws, they can be considered as
representing the efficiency of the organisms from which the
data was taken — and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly
compete by demographic means: by evolving a faster
reproduction.

Life history characteristics appear to be linked to taxonomic
groups.

We would predict that during geological history, ‘faster’ species
were not replaced by ‘slower’ species.

The physiological means by which species differ in their life
history are not well explored.



By what means do cattle achieve faster intrauterine
growth than horses?




A priori conditions and their consequences

By which means can organisms become more
efficient?
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By which means can organisms become more
efficient?

adapfting to
optimal
resource use
(niche specificity)

conftrolling

a broad set of resources
(niche generalism)
“super-niche” emergence

»

Probabillistic directionality IV: from use towards control

“In the course of the process described by Darwinian evolution, which includes
a not-so-sharply-defined relationship between specific niches and more-or-less
specific adaptations to them, including arms races and directionality of
reproductive efficiency, evolution might (but does not have to), helped by its
probabilistic directionality of increasing variability and complexity, evolve an
organism whose adaptations are of such a general application that ifs
existence changes the basic, probabilistic rules of evolution.”




The state of the planet

The biomass distribution on Earth
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Probabillistic directionality IV: from use towards control

once control evolves, competition will shift from
inter-specific to infraspecific;
Nno species diversity but diversity of
sub-niches, culture, tools ...
intraspecific competition = history
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PC NINJA TRAVELS THROUGH TIME, revealing the history of how
computers became our sidekicks. From sliding pebbles on a simple
machine to swiping your fingers across a touchscreen, technology
has transformed radically!

Erctroms: devces
Bt Couks sang a-mvk,
accass the wets, anct

rocanm e cats
become <o

50 foat 1 sze andt
ot 30 toss!

1o, festunny

Blyse Poscal ks
iha Paacaine (Pascars
Cabcubator), @ mochan i

201G machon mass-proaced 1 Mo aakaty i ooy o 9]

: , 4 el

Stevw ven .
4

o u e

1822 -

Charkes Batbage

. (979 ¢

Word pescasing
Eeceman a resiby ax




Directionality in Evolution:

beware of the natural fallacy
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