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Allometry reminder



Most biologists consider body mass the most 
important characteristic of an organism. It is also 
(mostly) easy to measure. 
All morphological and physiological traits scale 
somehow with body mass.
"Scaling is interesting because, aside from natural selection, it is one of the few 
laws we really have in biology." John Gittleman

Scaling: fundamental (conceptual) relevance 
of body mass       
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Morphological, physiological and life history variables 
scale with body mass.

Allometries

Linear scaling:   y = a BM1.0 or log y = log a + 1.0 BM

Allometric scaling: y = a BMb or log y = log a + b BM

(allometric scaling mostly explained by geometry – e.g. surface-
volume shifts, distribution networks etc.)

6:1 24:8=3:1
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Morphological, physiological and life history variables 
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The scaling pattern is 
often interpreted as a 
‘biological law’ (based on 
physical principles). 
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scale with body mass.

Testing for allometries
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Intercept
Slope
overall P for regression



Testing for allometries

Trait A

Tr
a

it
B

OLS   P = 1.00 slope (exponent) = 0
intercept ≈ constant



Testing for allometries

Trait A

Tr
a

it
B

OLS   P < 0.001 slope (exponent) =
b (95%CI b-1.96SE; b+1.96SE)
intercept =
a (95%CI a-1.96SE; a+1.96SE)

y = a xb
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Phylogenetic statistics
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independence of data points.
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Conventional regression analysis assumes 
independence of data points.
But this is violated by phylogenetic relationships.

Therefore, we perform allometric analyses also with 
accounting for phylogeny, using PGLS (Phylogenetic 
Generalized Least Squares).

Results mostly did not differ from conventional 
statistics in a relevant way, but the intensive use of 
comparative statistics (also with additional examples) 
led to formulation of some concepts new to 
ourselves.
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Three (of many) important test statistics:

Intercept a: mainly significant if 95%CI does not 
include 0

Slope b: significant if 95%CI does not include 0; 
indicates non-linearity if 95%CI does not include 1

Pagel‘s lambdaλ: if 95%CI includes 0, then there is no
phylogenetic structure in the dataset.
Does not decide whether the relationship is
significant or not, but whether phylogenetic statistics
need to be used or not.
Assumes Brownian motion; other measures of phylogenetic structure
assuming other evolutionary scenarios exist.
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Type I error: you find a relationship where there is 
none (but it is caused by the phylogenetic structure 
of the data)

Type II error: you overlook a relationship where there
is one (evident when you account for the
phylogenetic structure of the data)

Just an error: you estimate a different parameter
(e.g., allometric slope) depending on whether you
account for phylogeny or not

Comparative statistics - errors



Pagel‘s lambda( λ) examples
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Example I: gut contents

from Müller et al. (2013) CBP A
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no difference in 95%CI for
intercept or slope expected

from Clauss et al. (2013)

λ = 1

no error!



Example I: gut contents

from Müller et al. (2013)

OLS: 0.03 (0.025-0.032) BM0.93 (0.90-0.96)

PGLS: 0.03 (0.010-0.075) BM0.92 (0.85-0.98)



Example II: basal metabolic rate

from Müller et al. (2012)
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Example III: retention/digestibility

from Müller et al. (2013)
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λ = 1
Type I error !



Example IIIa: retention/digestibility

from Müller et al. (2013)

OLS: significant
PGLS: not significant



Example IIIb: fecal particle size

from Clauss et al. (2015)
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OLS n.s.
wider SE or 95%CI for intercept
but narrower one for slope
expected in PGLS

from Clauss et al. (2013)

λ = 1 Type II error !
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Example V: Gestation time
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PGLS *

Accounting for phylogeny

from Clauss et al. (2013)

λ = 1
just an error ?
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A deadly sin ? – No !

A comparison of OLS and PGLS results is an 
important tool for understanding the structure of 
the data! (irrespective of which is the ‘correct’ 
one) because the two make very different 
assumptions about the data
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Directionality in Evolution:
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"Scaling is interesting because, aside from natural 
selection, it is one of the few laws we really have in 

biology." John Gittleman
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Why would you consider 
this a pattern due to fixed 
life history tradeoff laws, 
and not rather a 
snapshot in a process of 
optimization?

You would not consider 
the overall pattern a fixed 
law, but consider it with 
respect to technical 
progress. 
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Life requires input of resources.
Life starts simple (non-complex).
Life means reproduction.

- spontaneously occurring yet heritable variability

- not only replacement but multiplication
Probabilistic directionality I: towards non-stasis

Probabilistic directionality II: more diversity & complexity

A priori conditions and their consequences





Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

A priori conditions and their consequences



Resources are finite.

now what?

A priori conditions and their consequences







‘Evolutionary progress’ – directional evolution



‘Evolutionary progress’ – directional evolution



‘Evolutionary progress’ – directional evolution



Equivalent use of limited resources



Stasis



Stasis



Competition for limited resources



Competition for limited resources



Competition for limited resources



Competition for limited resources



Competition for limited resources



Competition for limited resources



Competition for limited resources



Are conditions stable enough so that the
direction of a Darwinian Demon is always the

same?
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A priori conditions and their consequences

Resources are finite.



Resources are finite.

will ‘survivors’ 
have something 

in common?

A priori conditions and their consequences



‘Evolutionary progress’ – directional evolution



Darwinian evolution is a set of rules where the 
one constant (demographic) selective 

pressure is to outreproduce competitors.

In the presence of competitors, Darwinian 
selection should always go in the direction of 

a ‘Darwinian Demon’. 
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Resources are finite.

Probabilistic 
directionality III: 
towards faster 
reproduction

A priori conditions and their consequences
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Morphological, physiological and life history variables 
scale.

y

x

The question is:
What factors influence the 
scatter of the data?
The underlying fundamental 
question is:
What are the causes (and 
patterns) of diversity?
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Specific 
niche where 
high relative 
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Specific 
niche where 
low relative 

y is 
adaptive.

Traditional approach: 
Deviations from the regression 
line are interpreted as 
adaptations (e.g. to specific 
resources or habitats). 
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Life history scaling
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More recently radiated taxa 
have a lower y. Is evolution 
‘directed’ towards low y?

Is there a systematic phylogenetic structure in the 
dataset?
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High y a 
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extinction of 

species?

Is there a systematic phylogenetic structure in the 
dataset?
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Low y a 
contributing 

factor for the 
diversity of 

species?

Is there a systematic phylogenetic structure in the 
dataset?
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y

x

Is there a systematic phylogenetic structure in the 
dataset?

Interpreting scaling: snapshots

In this scenario, the scaling is a 
snapshot in evolutionary time. 
The scaling would have been 

different at different moments in 
evolutionary time (depending 

on extinction and radiation 
events)
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Why would you consider 
this a pattern due to fixed 
life history tradeoff laws, 
and not rather a 
snapshot in a process of 
optimization?

You would not consider 
the overall pattern a fixed 
law, but consider it with 
respect to technical 
progress. 



Assessing
‘direction’/Red Queen/escalation/progress 

in life history

using the PanTheria dataset
(Jones et al. 2009)



Because niche space is less diverse at larger body sizes, large 
herbivores may be a particularly fruitful area of research for 
‘directed evolution’.

Herbivore
basicTM

Herbivore
2.0TM

Herbivore
professionalTM

Herbivore
ultimateTM

Niche-specific assessment

?



Niche-specific assessment
Because niche space is less diverse at larger body sizes, large 
herbivores may be a particularly fruitful area of research for 
‘directed evolution’.
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(Precocial) Mammal gestation period

For any mammal, achieving the same degree of neonatal 
development in a shorter gestation period – if not associated with 
higher costs – should be advantageous (higher fecundity due to 
shorter generation times).

Days of gestation period (to apparently similar level of 
precociality) 

Cattle: app. 280 days 
Horse: app. 340 days 
Dromedary: app. 390 days
Okapi: app. 440 days 
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Days of gestation period (to apparently similar level of 
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The difference cannot be due to body size!
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For any mammal, achieving the same degree of neonatal 
development in a shorter gestation period – if not associated with 
higher costs – should be advantageous (higher fecundity due to 
shorter generation times).

Days of gestation period (to apparently similar level of 
precociality) 

Cattle: app. 280 days 
Horse: app. 340 days 
Dromedary: app. 390 days
Okapi: app. 440 days 

nearly extinct in a 
very limited 
geographical range
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For any mammal, achieving the same degree of neonatal 
development in a shorter gestation period – if not associated with 
higher costs – should be advantageous (higher fecundity due to 
shorter generation times).

Days of gestation period (to apparently similar level of 
precociality) 

Cattle: app. 280 days 
Horse: app. 340 days 
Dromedary: app. 390 days
Okapi: app. 440 days 

only in extreme, 
resource-poor
habitats

(Precocial) Mammal gestation period



For any mammal, achieving the same degree of neonatal 
development in a shorter gestation period – if not associated with 
higher costs – should be advantageous (higher fecundity due to 
shorter generation times).

Days of gestation period (to apparently similar level of 
precociality) 

Cattle: app. 280 days 
Horse: app. 340 days 
Dromedary: app. 390 days
Okapi: app. 440 days 

rule the world !!

(Precocial) Mammal gestation period
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A clear picture for intrauterine growth



A clear picture for lifetime offspring production



Summary, Conclusions & Outlook

Rather than understanding tradeoffs along the fast-slow 
continuum as fixed physical laws, they can be considered as 
representing the efficiency of the organisms from which the 
data was taken – and that efficiency may evolve.



Summary, Conclusions & Outlook

Rather than understanding tradeoffs along the fast-slow 
continuum as fixed physical laws, they can be considered as 
representing the efficiency of the organisms from which the 
data was taken – and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly 
compete by demographic means: by evolving a faster 
reproduction.



Summary, Conclusions & Outlook

Rather than understanding tradeoffs along the fast-slow 
continuum as fixed physical laws, they can be considered as 
representing the efficiency of the organisms from which the 
data was taken – and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly 
compete by demographic means: by evolving a faster 
reproduction.

Life history characteristics appear to be linked to taxonomic 
groups.



The interesting question …

… what allowed the remaining extant species of the 
‘slower’ taxa to survive?



Summary, Conclusions & Outlook

Rather than understanding tradeoffs along the fast-slow 
continuum as fixed physical laws, they can be considered as 
representing the efficiency of the organisms from which the 
data was taken – and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly 
compete by demographic means: by evolving a faster 
reproduction.

Life history characteristics appear to be linked to taxonomic 
groups.

We would predict that during earth history, ‘faster’ species were 
not replaced by ‘slower’ species.



Application: large herbivore diversity through
time



from Janis et al. (1994)
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Summary, Conclusions & Outlook

Rather than understanding tradeoffs along the fast-slow 
continuum as fixed physical laws, they can be considered as 
representing the efficiency of the organisms from which the 
data was taken – and that efficiency may evolve.

Within the boundaries of a specific niche, species possibly 
compete by demographic means: by evolving a faster 
reproduction.

Life history characteristics appear to be linked to taxonomic 
groups.

We would predict that during geological history, ‘faster’ species 
were not replaced by ‘slower’ species.

The physiological means by which species differ in their life 
history are not well explored.



By what means do cattle achieve faster intrauterine 
growth than horses?
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By which means can organisms become more 
efficient?

adapting to 
optimal 
resource use
(niche specificity)

A priori conditions and their consequences

controlling 
a broad set of resources

(niche generalism)
“super-niche” emergence

Probabilistic directionality IV: from use towards control
“In the course of the process described by Darwinian evolution, which includes 
a not-so-sharply-defined relationship between specific niches and more-or-less 
specific adaptations to them, including arms races and directionality of 
reproductive efficiency, evolution might (but does not have to), helped by its 
probabilistic directionality of increasing variability and complexity, evolve an 
organism whose adaptations are of such a general application that its 
existence changes the basic, probabilistic rules of evolution.”



estimate for reptiles similar magnitude as wild birds (but more
assumptions; estimate for amphibians not possible)

The state of the planet
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Probabilistic directionality IV: from use towards control

once control evolves, competition will shift from 
inter-specific to intraspecific; 

no species diversity but diversity of 
sub-niches, culture, tools … 

intraspecific competition = history
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