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Abstract As a result of pioneering work of Hofmann
(1973, 1989), nutritional ecologists classify ruminants
into three feeding-type categories: browsers (“‘concen-
trate” feeders), grazers, and intermediate or mixed feed-
ers. Hofmann proposed that these feeding types result
from evolutionary adaptations in the anatomy of the di-
gestive system and that one consequence is shorter reten-
tion of the digesta in the rumen of browsers, and thus a
decreased efficiency of fiber digestion relative to that of
grazers. We examined the hypotheses that (1) fiber di-
gestion oFbrowsers is lower than that of grazers, (2) sali-
land size is larger in all browsers than in grazers,
(3) the browser’s larger salivary glands produce larger
volumes of thin serous saliva than those of grazers, and

) thus, browsers have higher Tiquid passage rates than
do_grazers. We found that the extent of fiber digestion is
not significantly different between browsers and grazers,
although fiber digestion is positively related to herbivore
size. In general, salivary gland size is approximately 4
times larger in browsers than grazers, but some brawsers
(e.g., greater kudu) have small, grazer-sized salivary
glands. Resting (non-feeding or ruminating) saliva flow
rates of mule deer (browser) and domestic sheep and cat-
e (grazers) were nol significantly different from_each
other. Finally, ruminal liquid flow rates were not differ-
ent between feeding types. We conclude that many of
Hofmann's nutritional and physiological interpretations
of anatomical differences amongst ruminants are not
supportable.
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Introduction

Ruminants occupy a diverse array of feeding niches
throughout the world. Although they feed on plants of
widely divergent physical and chemical compositions
(e.g.. lichens, grasses, and woody stems), ecologists clas-
sify ruminants into one of three general feeding catego-
ries, comprising grazers, browser/concentrate feeders,
and intermediate feeders. These categories reflect the
predilection of the animals for consuming grasses,
browses/herbs/fruits, or a mixture of both, respectively
(Hofmann 1973, 1989).

In a classic work, Hofmann (1973) examined the for-
aging preferences of these groups in relation to their di-
gestive anatomy, and concluded that general digestive
system adaptations correspond to the ecological role of
the animal. He hypothesized that grazing ruminants are
better adapted for consuming slowly digested plant fiber
(typical of grasses and sedges) than are browsing rumi-
nants because grazers have larger rumens, and the struc-
ture of the rumen and omasum retards the passage of
food to the lower tract. Conversely, browsers have small-
er and less complex rumens and omasums, and they have
larger parotid salivary glands that produce a copious, se-
rous saliva to help buffer the rapidly digestible (“concen-
trate™) diet and aid in the passage of foods from the ru-
men. These differences have led Hofmann (1989, p. 453)
to suggest that “all [browsers and intermediate] species
cannot digest fibre as well as grazers”.

Hofmann’s nutritional and ecological interpretations
have been a powerful abstraction of ruminant function,
influencing the way that nutritionists and ecologists view
ruminant evolution and behavior, and the organization
and composition of herbivore communities (McNaugh-
ton and Georgiadis 1986; Owen-Smith 1991). However,
until recently, Hofmann's hypotheses have not been rig-
orously tested. In the first major attempt to test Hof-
mann’s ideas, Gordon and Illius (1994) concluded that
there_is no sighificant difference in_digestive Kinefics
(Termentation rate, daily VFA (volatile fatty acid) (VFA)
production, and mean total tract retention time of food)
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Abstract In his landmark 1989 paper, R.R. Hofmann
classified ruminants into three categories based upon di-
gestive anatomy and preferred forages. and proposed that
divergence of feeding strategies among ruminants is a re-
sult of morphological evolution of the digestive tract. Be-
cause of the hypothetical nature of these views and the in-
grained beliefs that they chalienged. several papers were
published that reported tests of Hofmann's predictions.
The consensus among these papers was that Hofmann's
predictions were inadequate. | describe the experimental
evidence that has been put forth in opposition to the rumi-
nant diversification hypothesis and contend that we have
failed to adequately test Hofmann's predictions.

Key words Concentrate selectors - Intermediate
feeders - Roughage eaters - Rumen bypass - Ruminant
diversification

Early attempts to explain variation found in feeding strate-
gies of free-ranging ruminants classified individual species
as “browsers™ or “grazers™ based upon types of forage con-
sumed. Though an important step in understanding the
complexities of ruminant nutrition, Hofmann and Stewart
(1972) recognized that feeding strategies of ruminants
could not simply be classified into two categories. and pro-
posed three catcgorics (i.c., butk and roughage eaters. se-
lectors of concentrate forages. and intermediate feeders)
based upon stomach structure and feeding ecology. Hof-
mann (1984) later documented variation in all portions of
the digestive anatomy among the three categories of his
system of ruminant classification. The dynamic interac-
tions among body size. fermentation and passage rates. and
energetic requirements. and their influence on dietary strat-
egy formed the basis for these carly classifications.
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In a landmark paper. Hofmann (1989) expanded upon
the concepts proposed by Hofmann and Stewart (1972)
and Hofmann (1984) by providing a working hypothesis
of the functional and morphological basis for diversity in
ruminant feeding strategies. Hofmann (1989) proposed
that feeding strategies ranged from nonselective intake
of bulk roughage and efficient fermentation in the fore-
stomach. to selectivity for concentrate forages (high in
plant cell content) with increased post-ruminal digestion.
This hypothesis challenged many beliefs regarding di-
gestion in free-ranging ruminants and proposed that we
reexamine the manner in which ruminant herhivores ob-
tain nutrients from the environment.

Because of the magnitude of Hofmann's hypothesis,
several papers (Gordon and llius 1994, 1996: Robbins ¢t
al. 1995) were published describing tests of his predic-
tions. These researchers examined components of Hof-
mann’s hypothesis and concluded that they did not find
support for morpho-physiological adaptations to diet
type within classes of ruminants. They attributed differ-
ences in digestive function to body mass or food charac-
teristics. As a result, the consensus has been that Hof-
mann’s hypothesis regarding gut morphology and func-
tion in classes of ruminants is inadequate (Robbins et al.
1995: lius 1997). However. upon critical examination
of both Hofmann's hypotheses and subsequent critiques.
I contend that we have not adequately tested Hofmann
(1989). Although scieatifically sound. the studies of
Gordon and Itlius (1994. 1996) and Robbins et al. (1995)
did not completely examine components of the ruminant
diversification hypothesis and therefore should not be
considered to support or refute Hofmann (1989).

Hofmann (1989) proposed variations on the tradition-
al theme of foregut fermentation in the ruminant. In ad-
dition to suggesting that hindgut fermentation may play
an important role in some ruminant animals. he also
commented on postruminal digestion of soluble compo-
nents of the diet after rumen bypass via the reticular
groove (Hofmann 1989, p. 448). While post-ruminal fer-
mentation had previously received some attention (Van
Soest 1982). sclective bypass of the rumenoreticular
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on stomach morphology were taken into account, there
was no significant grouping of species according to feed-
ing style. When information about the feeding style of
each species was included in the analysis, the set of mor-
phological traits separated the mixed feeders from the
other two feeding styles, but grazers and browsers had
similar morphological features. Most of the variance in
stomach morphology was explained by body mass and a
lesser proportion by phylogeny. The main morphological
features that have previously been proposed as being ad-
aptations in grazing species, namely, lengthening of the
retention time of ingesta to achieve an increase in their
fibre digestion capability by means of a larger relative
stomach capacity, a greater subdivision of chambers and
smaller openings, are not supported by the findings of
this study. Thus, there is no consistent evidence to sup-
port a significant adaptive effect of stomach morphology
to different diets in the Artiodactyla.

Keywords Allometry - Body mass - Comparative
method - Feeding styles - Gut morphology

F.J. Pérez-Barberfa (5=J) - LJ. Gordon

The Macaulay Land Use Research Institute, Craigiebuckler,
Aberdeen AB15 8QH, UK

e-mail: j.perez-barberia@macauley.ac.uk

Tel.: +44-1224-318611, Fax: +44-1224-311556

AW, Illius

Institute of Cell, Animal and Population Biology,
University of Edinburgh, West Mains Road,
Edinburgh EH9 3JT, UK

measurable features. Although the functionality of all
variables measured has not been shown in the literature,
we consider that these variables provide a measure of
function. Functional differences among feeding styles

et al. 1995). Hofmann's categorisation of feeding styles
has been extensively used in grazing ecology (Owen-
Smith 1982; Gordon and Illius 1988, 1994, 1996;
McNaughton 1991; Van Wieren 1996). Differences in
stomach morphology between species that differ in diet
triggered subsequent studies on other parts of the diges-
tive system, for example, morphological adaptations of
the organs involved in the selection (lips, muzzle: Janis
and Ehrhardt 1988; Pérez-Barberia and Gordon 2001a)
and the processing of food (teeth, jaws, jaw muscles:
Fortelius 1985; Axmacher and Hofmann 1988; Janis
1988; Pérez-Barberfa and Gordon 1999a, 2001a) and
also in behavioural variables (activity time: Mysterud
1998; Pérez-Barberia and Gordon 1999b; home range:
Mysterud et al. 2001; habitat use: Pérez-Barberia et al.
2001b). Based on Hofmann's (1973) classification, it has
been assumed that grazing species achieve a greater ex-
tent of digestion of fibre in comparison with browsing
species by means of food retention in the rumen, large
stomach capacity, higher degree of stomach compart-
mentalisation and smaller openings between the rumen
and omasum. However, a statistical relationship between
the differences in stomach morphology, described by
Hofmann (1973), and diet composition has not yet been
demonstrated.

A recurrent problem which arises when studying the
differences in the morphology or function of the diges-
tive system, in relation to Hofmann's classification, is the
possible confounding effect of body mass (Gordon and
Illius 1994; Robbins et al. 1995; Iason and Van Wieren
1998). After controlling for body mass, Gordon and
Illius (1994) found that there were no differences in wet




Oecologia (2001) 129:498—508
DOI 10.1007/s004420100768

F. Javier Pérez-Barberia - Iain J. Gordon
Andrew W. Illius

Phylogenetic analysis of stomach adaptation in digestive strategies
in African ruminants

measurable features. Although the functionality of all
variables measured has not been shown in the literature,
we consider that these variables provide a measure of
function. Functional differences among feeding styles

on stomach morpholoev were taken into account. there 10AR 1084 10R%- Hafmann and Stawart 1077 Hafmann

Table 2 The data set used in this study comes from Hofmann (1973).
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We would have to conclude that, at present, there do not
appear to be any known differences in morphology that
can explain differences in digestive efficiency. Are other
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Summary. A review is made of the ruminant digestive sys-
tem in its morphophysiological variations and adaptations
relating to foraging behaviour, digestive physiology, to in-
teractions between plants and ruminants and to geographic

- and climatic diversity of ruminants’ ecological niches. Evi-

dence is provided for evolutionary trends from an extreme
selectivity mainly for plant cell contents and dependence
upon a fractionated fore- and hindgut fermentation, to an
unselective intake of bulk roughage subjected to an efficient
plant cell wall fermentation, mainly in the forestomachs.
The review is based on detailed comparative morphological
studies of all portions of the digestive system of 65 ruminant
species from four continents. Their results are related to
physiological evidence and to the classification of all extant
ruminants into a flexible system of three overlapping mor-
phophysiological feeding types: concentrate selectors
(40%), grass and roughage eaters (25%) and intermediate,
opportunistic, mixed feeders (35%). Several examples are
discussed how ruminants of different feeding types are gain-
ing ecological advantage and it is concluded that ruminants
have achieved high levels of digestive efficiency at each evo-
lutionary stage, (including well-documented seasonal adap-
tations of the digestive system) and that ruminant evolution
is still going on. Deductions made from the few domesti-
cated ruminant species may have, in the past, biased scien-
tific evaluation of the free-ranging species’ ecology. The
main threat to a continuous ruminant evolution and diver-
sity appears to be man’s neglect for essential ecological in-
teractions between wild ruminants and their specific habi-
tats, which he alters or destroys.

Key words: Wild ruminants — Digestive system — Morpho-
physiological adaptation — Evolutionary trends — Plant-her-
bivore interactions

* Supported by German Research Community grant DFG Ho
273/6

** Dedicated to Professor Dr. Dr. h.c. Dietrich Starck on the occa-
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Abbreviations: bw body weight; CS concentrate sclector; DFC dis-
tal fermentation chamber (distended caecocolon); GR grass and
roughage cater; /M intermediate (mixed) feeder; PFC proximal
fermentation chumber (ruminoreticulum/forestomachs); RR Ru-
minoreticulum; SCFA Short-chain fatty acis (acetic, butyric, pro-
pionic acid set free by rumen bacteriae); SE Surface enlargement
(of absorptive mucosa)

Our growing scientific knowledge of the nutritional physiol-
ogy of ruminants is documented in a vast number of publi-
cations annually, and every five years more than 600 re-
searchers from all over the world meet in a different place
to review and present new results. They discuss highly spe-
cialised aspects of physiology, metabolism, nutrition, bio-
chemistry and digestive problems of these remarkable mam-
mals - yet very few of them or of the thousands of others
who deal scientifically with ruminants appear to be con-
cerned that almost all of their results, their methods and
models are based on merely two out of 150 species of extant
ruminants. These two are sheep and cattle. Much fewer
physiological and nutritional data available refer to the goat
and far fewer still to the Asiatic water buffalo. Compared
to all this, experimental data on wild African bovids, Eura-
sian cervids or American deer (let alone such oddities as
the pronghorn “antelope™, the giraffe or the musk ox -
all of which are ruminants) cannot even be regarded as
minimal. However, each new study on ruminants other than
cattle, sheep and goats shakes the established ruminant im-
age. It is different, though similar.

Ruminants are animals important to man. Some species
are bioindicators of the first order in polluted human envi-
ronments. More species are living barometers of man’s in-
ability to understand and handle ecological interactions and
most, if not all ruminant species can benefit nutritionally
from what man cannot digest.

Because they convert apparently indigestible carbohy-
drates and chemically trapped or protected proteins into
nutritious and useful products, they deserve more than one
approach. Ruminants are late-comers in evolution. Their
stomach is a phylogenetic peak of complexity, not only
compared with our own digestive tract.

But it is wrong to define ruminants simply as specialised
fermentation machines which break down cellulose after
chewing the cud.

Their digestive physiology is not based on an “all or
nothing™ principle and none of them is *“primitive”, al-
though embryological evidence strongly suggests that roe
deer or white-tailed deer, dik-diks or muntjac, kudu or
moose are “older”, earlier and still inefficient in breaking
down cellulose. It will be shown, that ruminant evolution
in the light of todays’ 150 living species is certainly **a bush,
not a ladder™ (Gould 1986). It has produced a fascinating
array of animal forms ranging from 3 kg to over 1000
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Explaining a putative contradiction

a slow fluid turnover rate, while CS with high fermentation
rates and a more rapid flow through a smaller RR (shorter
retention) obviously required more buffer to protect them

liquid, which reduces retention time (as observed). Second-
ly, CS produce a much higher proportion of thin, proteina-
ceous serous saliva (all glands open into the mouth cavity)
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Ditferent salivary gland size

GRASS and ROUGHAGE

CONCENTRATE S )1 INTERMEDIATE, ~~<. Z
SELECTORS ol e ﬁ MIXED FEEDERS R 4 EATERS (high fiber) \ /
Roe deer v~ A S Red deer _ N A Mouflon 7, /
! : e 7 - b 7 . I ) b o
N " G p } ’ N ' \ s Vi N e
s, g e ‘ %
‘ & % 14
>,

Topi antelope
(Tiang,Tsessebe)

L . "’(”
ST R
«..... P,
Caribou d’ ,
N

Thomson's
Gazelle

frorn Hofmann (1989)



Ditferent salivary gland size
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Different omasum size

aus Hofmann (1973)
& Nickel et al. (1967)

‘\““l”‘l( .
- .\\‘ Téo
-~ rom et




Different omasum size
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Different omasum size
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Sorting by density ...

Flotation and sedimentation
only work in a fluid medium




Sorfing by density ...

Flotation and sedimentation
only work in a fluid medium

L Indication for a difference in
sorting mechanism between
browsers and grazerse
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- Evolutionary steps of ecophysiological adaptation

and diversification of ruminants:

a comparative view of their digestive system * **

R.R. Hofmann

Institut fir Veterinir-Anatomie, -Histologie und -Embryologie, Abteilung Vergleichende Anatomie der Haus- und Wildtiere,
Justus-Liebig-Universitdt Giessen, D-6300 Giessen, Federal Republic of Germany

Summary. A review is made of the ruminant digestive sys-
tem in its morphophysiological variations and adaptations
relating to foraging behaviour, digestive physiology, to in-
teractions between plants and ruminants and to geographic

- and climatic diversity of ruminants’ ecological niches. Evi-

dence is provided for evolutionary trends from an extreme
selectivity mainly for plant cell contents and dependence
upon a fractionated fore- and hindgut fermentation, to an
unselective intake of bulk roughage subjected to an efficient
plant cell wall fermentation, mainly in the forestomachs.
The review is based on detailed comparative morphological
studies of all portions of the digestive system of 65 ruminant
species from four continents. Their results are related to
physiological evidence and to the classification of all extant
ruminants into a flexible system of three overlapping mor-
phophysiological feeding types: concentrate selectors
(40%), grass and roughage eaters (25%) and intermediate,
opportunistic, mixed feeders (35%). Several examples are
discussed how ruminants of different feeding types are gain-
ing ecological advantage and it is concluded that ruminants
have achieved high levels of digestive efficiency at each evo-
lutionary stage, (including well-documented seasonal adap-
tations of the digestive system) and that ruminant evolution
is still going on. Deductions made from the few domesti-
cated ruminant species may have, in the past, biased scien-
tific evaluation of the free-ranging species’ ecology. The
main threat to a continuous ruminant evolution and diver-
sity appears to be man’s neglect for essential ecological in-
teractions between wild ruminants and their specific habi-
tats, which he alters or destroys.

Key words: Wild ruminants — Digestive system — Morpho-
physiological adaptation — Evolutionary trends — Plant-her-
bivore interactions

* Supported by German Research Community grant DFG Ho
273/6

** Dedicated to Professor Dr. Dr. h.c. Dietrich Starck on the occa-
sion of his 80th birthday

Abbreviations: bw body weight; CS concentrate sclector; DFC dis-
tal fermentation chamber (distended caecocolon); GR grass and
roughage cater; /M intermediate (mixed) feeder; PFC proximal
fermentation chumber (ruminoreticulum/forestomachs); RR Ru-
minoreticulum; SCFA Short-chain fatty acis (acetic, butyric, pro-
pionic acid set free by rumen bacteriae); SE Surface enlargement
(of absorptive mucosa)

Our growing scientific knowledge of the nutritional physiol-
ogy of ruminants is documented in a vast number of publi-
cations annually, and every five years more than 600 re-
searchers from all over the world meet in a different place
to review and present new results. They discuss highly spe-
cialised aspects of physiology, metabolism, nutrition, bio-
chemistry and digestive problems of these remarkable mam-
mals - yet very few of them or of the thousands of others
who deal scientifically with ruminants appear to be con-
cerned that almost all of their results, their methods and
models are based on merely two out of 150 species of extant
ruminants. These two are sheep and cattle. Much fewer
physiological and nutritional data available refer to the goat
and far fewer still to the Asiatic water buffalo. Compared
to all this, experimental data on wild African bovids, Eura-
sian cervids or American deer (let alone such oddities as
the pronghorn “antelope™, the giraffe or the musk ox -
all of which are ruminants) cannot even be regarded as
minimal. However, each new study on ruminants other than
cattle, sheep and goats shakes the established ruminant im-
age. It is different, though similar.

Ruminants are animals important to man. Some species
are bioindicators of the first order in polluted human envi-
ronments. More species are living barometers of man’s in-
ability to understand and handle ecological interactions and
most, if not all ruminant species can benefit nutritionally
from what man cannot digest.

Because they convert apparently indigestible carbohy-
drates and chemically trapped or protected proteins into
nutritious and useful products, they deserve more than one
approach. Ruminants are late-comers in evolution. Their
stomach is a phylogenetic peak of complexity, not only
compared with our own digestive tract.

But it is wrong to define ruminants simply as specialised
fermentation machines which break down cellulose after
chewing the cud.

Their digestive physiology is not based on an “all or
nothing™ principle and none of them is *“primitive”, al-
though embryological evidence strongly suggests that roe
deer or white-tailed deer, dik-diks or muntjac, kudu or
moose are “older”, earlier and still inefficient in breaking
down cellulose. It will be shown, that ruminant evolution
in the light of todays’ 150 living species is certainly **a bush,
not a ladder™ (Gould 1986). It has produced a fascinating
array of animal forms ranging from 3 kg to over 1000
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Differences in the physical structure
between grass and browse

e Cell walls of grass are thicker than those
of browse

e Grass and browse fractionate into
particles of different shape
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Dental adaptations

* An evident link: hypsodonty index and grass
consumption
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own evaluation, but similar findings published by Janis (1995), Perez-Barberia and Gordon
(2001), Mendoza and Palmqvist (2008)



Masticatory adaptations

Oecologia (2008) 157:377-385
DOI 10.1007/s00442-008-1093-z

PHYSIOLOGICAL PHYSIOLOGY - ORIGINAL PAPER

Higher masseter muscle mass in grazing than in browsing
ruminants

Marcus Clauss - Reinold R. Hofmann -
W. Jiirgen Streich - Jorns Fickel - Jiirgen Hummel
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Dental adaptations

Journal of Zoology

Joumal of Zoology. Print ISSN 0952-8369

Enamel ridge alignment in upper molars of ruminants in
relation to their natural diet

T. M. Kaiser', J. Fickel?, W. J. Streich?, J. Hummel® & M. Clauss*
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Differences in flotation behaviour between

grass and browsee¢
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No stratification of rumen contents: ‘moose-
type’

from Clauss et al. (2010)



No stratification of rumen contents: ‘moose-
type'’

Photo: M. Lechner-Doll




Stratification of rumen contents
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Testing stratification by ultrasound - moose
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from Tschuor & Clauss (2008)



by dry matter content
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Testing stratification by dry matter content

from Codron & Clauss (2010)



Testing stratification by rumen morphology

-Rumen papilla growth is stimulated by volatile
fatty acids

-Differences in ruminal papillation should indicate
differences in rumen contents stratification (e.g.,
a gas accumulation (CO,, methane) will
displace volatile fatty acids




Testing stratification by rumen morphology

from Clauss, Hofmann et al. (2009)



Testing stratification by rumen morphology
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Testing stratification by rumen morphology

from Clauss, Hofmann et al. (2009)



Stratification and rumen papillation
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Stratification and rumen papillation
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Stratification and rumen papillation
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Stratification and rumen papillation
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Stratification and rumen papillation
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Stratification and rumen papillation
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Stratification and rumen papillation

from Codron & Clauss (2010)
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Rumen fluid viscosity
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Difference in fluid retention

large difference between small difference
fluid and particle passage between fluid and
particle passage



Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention

120 -
@ '‘Browser'/'Moose-type'
[1'Grazer'/'Cattle-type'
100 -
50 - -

MRT.RR (h)
(o))
o

WA

0 m T T T T T 1
0 10 20 30 40 50 60

MRT;..sRR (h)

from Clauss et al. (2010)



Fluid and parficle retention
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Fluid and parficle retention
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Fluid and parficle retention
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Absolute fluid retention - moose vs. cattle
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large omasum - high small omasum - lower
water absorption water absorption
capacity capacity

from Hofmann (1973, 1992)



Rumen morphology (papillation) and
physiology (passage pattern) match

from Clauss, Hofmann et al. (2009)



Rumen morphology (papillation) and
physiology (passage pattern) match
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Abstract

As short chain fatty acids produced in the forestomach are insufficient to satisfy the energy requirements of the
concentrate selecting roe deer (Capreolus capreolus), it is proposed that these animals may have other mechanisms to
avoid energy losses due to microbial fermentation. Nutrients bypassing down the ventricular groove (rumen bypass) or
ruminal escape of unfermented or partially fermented nutrients may be two alternatives. As metabolic evidence for
incomplete fermentation in the forestomach we investigated: (1) the abundance of the sodium-dependent glucose
co-transporter (SGLT1) in the duodenum; (2) enzyme activities of maltase, saccharase and a-amylase in duodenal and
pancreatic tissue; and (3) the proportion of essential, polyunsaturated fatty acids in depot fat samples from ruminants of
different feeding type and — for comparison — from animals with a simple stomach. The high abundance of SGLT1,
high enzyme activity and the high proportion of polyunsaturated fatty acids in the concentrate selecting ruminants
support the hypothesis of rumen bypass or ruminal escape of nutrients in roe deer and reflect differences in nutrient
utilization by ruminants that belong to different feeding types. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: C | s; Enzyme activitics; Feeding type; Roc deer; Rumen bypass: Ruminal escape; Ruminants; Polyunsatu-

rated fatty acids; Sodium-dep co- porter

1. Introduction

Roe deer (Capreolus capreolus) are the most
abundant cervids in Europe and with a body
weight of 20-30 kg the smallest indigenous rumi-

* Corresponding author. EichhornstraBe 10, 15806 Zossen,
Germany. Tel.: +49-3377-393-095; fax: +49-3377-200-810.
E-mail address: thsch@arcormail.de (A. Rowell-Schifer).

nant species. As energy requirements increase
proportional to metabolic weight (Kleiber, 1961)
roe deer require relatively more energy per unit
of body mass for maintenance compared with that
required by larger animals. To optimize the in-
take of energy they select easily digestible forage,
especially dicotyledons, with a high proportion of
soluble plant cell contents (Tixier et al, 1997).
Due to this selective feeding behaviour and a
number of morphological and physiological par-
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Vitamin E status

Dierenfeld (1989):

On comparable supplementation,
grazers seem fo have a lesser
vitamin E-status than browsers.






