

Introduction to animal physiology

Marcus Clauss

Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland

Bio 122 2013

Physiology

Science of organismal function from the subcellular level to the whole organism.

Describes interactions of organism and environment.

Quantifies rules for functions, linking them to physical and (bio)chemical principles.

Cell physiology – molecular biology

Genome

Proteins & Pathways

Cell

Cell physiology – molecular biology

Genome
Proteins & Pathways

Cell

Tissue physiology

Tissue physiology

Organ physiology

Organ physiology

Organismal physiology

Organismal physiology

Organismal physiology

Population physiology - ecology

Ecophysiology

Evolutionary physiology

Basic function: synapomorphy

Eyelid
Cornea
Pupil
Iris
Ciliary muscle
Lens
Retina
Optic nerve
Optic ganglion

Basic function: parallel evolution

Cell Organism

Cell

 Modulating enzyme and membrane properties

Homeostasis

Organism Neuroendocrine feedback,

behavioural adjustment

Cell

 Modulating enzyme and membrane properties Homeostasis

Organism Neuroendocrine feedback,

 Neuroendocrine feedback, behavioural adjustment

Cell

 Modulating enzyme and membrane properties

Homeostasis

Organism Neuroendocrine feedback,

 Neuroendocrine feedback, behavioural adjustment

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production

Homeostasis Gas exchange

Organism Neuroendocrine feedback,

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production

Homeostasis Gas exchange

Organism Neuroendocrine feedback,

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes

Homeostasis
Gas exchange
Nutrient supply

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes

Homeostasis Gas exchange Nutrient supply

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

Homeostasis
Gas exchange
Nutrient supply
Circulation

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

Homeostasis
Gas exchange
Nutrient supply
Circulation

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae
- Receptors

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system
 - Sensory organs, nervous system

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

mitochondrion
mitochondrion
mitochondrion
microtubules
(part of cytoskeleton)
lysosome
lysosome
smooth
endoplasmic
reticulum
plasma
membrane
nucleus
nucleus
chromatin
nuclear pore
nuclear envelope
Golgi complex

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae
- Receptors
- Hypertrophy, mitosis, meiosis

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system
 - Sensory organs, nervous system
 - Sexual/asexual, reproductive organs

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

mitochondrion

mitochondrion

mitochondrion

mitochondrion

mitochondrion

mitochondrion

mitochondrion

mitochondrion

plasma
membrane

nucleus
nucleolus
chromatin
nuclear pore
nuclear envelope
Golgi complex

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae
- Receptors
- Hypertrophy, mitosis, meiosis
- Lysosomes

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction
Defence

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system
 - Sensory organs, nervous system
 - Sexual/asexual, reproductive organs
 - Immune system

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules

mitochondrion
mitochondrion
mitochondrion
microtubules
(part of cytoskeleton)
lysosome
lysosome
smooth
endoplasmic
reticulum
nucleus
nucleolus
chromatin
nuclear pore
nuclear envelope
Golgi complex

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction
Defence

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart

Basic functions

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae
- Receptors
- Hypertrophy, mitosis, meiosis
- Lysosomes

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction
Defence

Organism

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system
 - Sensory organs, nervous system
 - Sexual/asexual, reproductive organs
 - Immune system

single cells to whole animals

Basic functions

Cell

- Modulating enzyme and membrane properties
- Carbon oxidization, CO₂ & H₂O production
- Diffusion, transport, pinocytosis, lysosomes
- Diffusion, cytoskeletal streaming, microtubules
- Vacuoles
- Tubulin, Actin/Myosine, amoeboid movement, cilia, flagellae
- Receptors
- Hypertrophy, mitosis, meiosis
- Lysosomes

Homeostasis
Gas exchange
Nutrient supply
Circulation
Excretion
Movement
Sensation
Reproduction
Defence

Organism

- Neuroendocrine feedback, behavioural adjustment
- Ventilation (Lung, gills, tracheae)
 - Feeding, digestion, absorption, gastrointestinal tract, liver
 - Vascular system, heart
 - Digestive and urinary tract, kidneys, bladder
 - Musculoskeletal system
 - Sensory organs, nervous system
 - Sexual/asexual, reproductive organs
 - Immune system

single cells to whole animals

compartmentalization of body into groups of specialized cells control chemistry by building buffers between the uncontrolled environment and the controlled space within each cell

Basic functions: fundamental options

'conform'

Homeostasic control

'regulate'

no internal set point large variation

'poikilo'

internal set point small variation

'homeo'

Basic functions: fundamental options

poikilotherms are often stenotherms

homeotherms are often eurytherms

Slow pace of life of the Antarctic colossal squid

RUI ROSA AND BRAD A. SEIBEL2

Journal of the Marine Biological Association of the United Kingdom, 2010, 90(7), 1375-1378

Energy consumption (kcal day⁻¹) and prey biomass requirements (kg day⁻¹)

Life history

'slow' 'fast'

Life history

'slow'

Metabolism

'fast' high

Life history

'**slow**' low long

Metabolism
Times
(gestation,
longevity, growth,
time to 1st
reproduction)

'fast' high short

Life history

'**slow**' low long

Metabolism
Times
(gestation,
longevity, growth,
time to 1st
reproduction)
Young

'fast' high short

few, precocial

many, altricial

Life history

'**slow**' low long

Metabolism
Times
(gestation,
longevity, growth,
time to 1st
reproduction)
Young
Mortality

many, altricial high

'fast'

high

short

few, precocial low

Life history

'**slow**' low long

Metabolism
Times
(gestation,
longevity, growth,
time to 1st
reproduction)
Young
Mortality

many, altricial high

'fast'

high

short

few, precocial low

Life history

'slow'
low Metabolism high short

(gestation,

longevity, growth,

time to 1st

reproduction)

few, precocial Young low Mortality

many, altricial high

Life history

'slow' 'fast'

A lifestyle view of life-history evolution

Detailed function: adaptation/apomorphy

Detailed function: adaptation/apomorphy

There is little or no development of the renal papilla in freshwater aquatic species. However,... ... the renal papilla is highly developed in species native to arid habitats, so much so that it often penetrates well into the ureter.

Aquatic species

Mesic species

Arid species

Aquatic mole (Desmana moschata)

European hedgehog (Erinaceus europaeus)

Elephant shrew (Macroscelides sp.)

INSECTIVORES

Detailed function: adaptation/apomorphy

Structure and concentrating mechanism in the mammalian kidney¹

BODIL SCHMIDT-NIELSEN² AND ROBERTA O'DELL³ Am. J. Physiol. (1961) Na+ UREA Beaver # 5 Blood Urea 5.55 Creat u/p 121 Urine m Osm 387 URINE Rabbit #8 Blood Urea 3.86 Creat u/p 159.5 Urine m Osm 914.5 URINE Psammomys #13 Blood Urea 10.7 Creat u/p 150 Urine m Osm 3023 7 URINE 60 40 40 60 Na+ CONC. IN UREA CONC. IN RENAL TISSUE H20 RENAL TISSUE H20 Na+CONC. IN MUSCLE H2O UREA CONC IN PLASMA

Body size, medullary thickness, and urine concentrating ability in mammals

CAROL A. BEUCHAT

Am. J. Physiol. (1990)

Ecological challenge

Ecological opportunity

Ecological challenge

Ecological opportunity

- reduction (saving)

Ecological challenge

- addition (cost)

Ecological opportunity

- reduction (saving)

Ecological challenge

- addition (cost)

high efficiency that is often not able to use high resource availability competitively

Ecological opportunity

Ecological challenge

- reduction (saving)

- addition (cost)

Detailed function: convergence/homoplasy

Detailed function: convergence/homoplasy

from Hill et al. (2004)

Structure and concentrating ability of the mammalian kidney: correlations with habitat

CAROL A. BEUCHAT Am. J. Physiol. (1996)

Detailed function: different solutions to the same problems

Marine Terrestrial

Marine viscous

Medium

Terrestrial thin

Marine viscous buoyancy

Medium Support Terrestrial thin gravity

Marine viscous buoyancy high

Medium Support Pressure Terrestrial thin gravity low

Marine viscous buoyancy high 3 D

Medium
Support
Pressure
Dimensionality

Terrestrial thin gravity low mostly 2 D

Marine
viscous
buoyancy
high
3 D
high

Medium
Support
Pressure
Dimensionality
Conductance

Terrestrial thin gravity low mostly 2 D low

Marine
viscous
buoyancy
high
3 D
high
high

Medium
Support
Pressure
Dimensionality
Conductance
Thermal stability

Terrestrial
thin
gravity
low
mostly 2 D
low
low

Characterising basic condition

Marine
viscous
buoyancy
high
3 D
high
high

low

Medium
Support
Pressure
Dimensionality
Conductance
Thermal stability
Oxygen

Terrestrial
thin
gravity
low
mostly 2 D
low
low
high

Detailed function: solutions of different efficiency

Selective brain cooling: a multiple regulatory mechanism

Michał Caputa*

Journal of Thermal Biology 29 (2004) 691–702

Selective brain cooling: a multiple regulatory mechanism

Michał Caputa*

Journal of Thermal Biology 29 (2004) 691–702

Selective brain cooling: a multiple regulatory mechanism

Michał Caputa*

Journal of Thermal Biology 29 (2004) 691–702

The carotid rete and artiodactyl success

G. Mitchell* and A. Lust

Biol. Lett. (2008) 4, 415-418

The carotid rete and artiodactyl success

G. Mitchell* and A. Lust

The carotid rete and artiodactyl success

G. Mitchell* and A. Lust

Biol. Lett. (2008) 4, 415-418

Biol. Lett. (2009) 5, 97–98 doi:10.1098/rsbl.2008.0429 Published online 7 October 2008

Physiology

Artiodactyl 'success' over perissodactyls in the late Palaeogene unlikely to be related to the carotid rete: a commentary on Mitchell & Lust (2008)

Physiology

- describes rules that determine function of biological units of varying complexity
- is linked to physical and biochemical principles
- describes the link between the environment and the biological unit
- is linked, by describing different or similar solutions to the same challenges, to evolutionary history

