Low energy requirements in an artiodactyl family: the case of the camelids M.T. Dittmann^{1,2}, J. Hummel³, U. Runge⁴, C. Galeffi⁵, M. Clauss¹ Clinic for Zoo Animals, Exotic Pets and Wildlife, Univ. of Zurich, Switzerland¹, ETH Zurich, Institute of Agricultural Sciences, Switzerland², Department of Animal Sciences, Univ. of Göttingen, Germany³, Kamelhof Olmerswil, Switzerland⁴, Zurich Zoo, Switzerland⁵ Reasons for systematic variation in the level of mammalian metabolism: - habitat - arctic vs. tropic - marine vs. terrestrial - ground vs. subterranean Reasons for systematic variation in the level of mammalian metabolism: - habitat - arctic vs. tropic - marine vs. terrestrial - ground vs. subterranean - phylogeny - marsupials vs. eutheria - xenarthra vs. other eutheria - camelids ? (vs. ruminants) ### Presumptive evidence II: life history #### Presumptive evidence III: fossil sequence Historical Biology, 1994, Vol. 8, pp. 15–29 Reprints available directly from the publisher Photocopying available by license only © 1994 Harwood Academic Publishers GmbH Printed in Malaysia #### MODELLING EQUID/RUMINANT COMPETITION IN THE FOSSIL RECORD CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ ¹Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA ²Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB9 2QY, UK ³School of Agriculture, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JG, UK (Received November 2, 1993) Figure 3 Body size distribution of browsing Miocene equids and ruminants. Key to ungulate taxa: A. Color of taxon: Striped horses=Mesohippines; white horses=Anchitherines; spotted horses=Hypohippines; black artiodactyls=Pecorans; cross-hatched artiodactyls=Tylopods. CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ CHRISTINE M. JANIS¹, IAIN J. GORDON² and ANDREW W. ILLIUS³ ### Question Does more concrete evidence exist that camelids, as a taxonomic group, are characterised by a low level of metabolism? #### Methods - 1. Literature data: comparative food intake in camelids and domestic ruminants - a) ad libitum food access - b) roughage-only diets - c) only studies that compared at least one camelid and one ruminant species in the same experiment #### Methods - 1. Literature data: comparative food intake in camelids and domestic ruminants - a) ad libitum food access - b) roughage-only diets - c) only studies that compared at least one camelid and one ruminant species in the same experiment - 2. Oxygen consumption (chamber respirometry) in alpacas, llamas and Bactrian camels 18 publications, 75 direct comparisons Comparisons on the basis of kg^{0.75} kg^{0.9} kg^{1.0} 18 publications, 75 direct comparisons Comparisons on the basis of kg^{0.75} kg^{0.9} kg^{1.0} 18 publications, 75 direct comparisons Comparisons on the basis of kg^{0.75} kg^{0.9} kg^{1.0} 18 publications, 75 direct comparisons Comparisons on the basis of kg^{0.75} kg^{0.9} kg1.0 Ruminant intake higher by a factor of 1.4 ± 0.4 1.5 ± 0.5 1.6 ± 0.5 5 alpacas, 6 llamas, 5 Bactrian camels constant access to food (lucerne) and water measurements in winter Portable pumps and analyser (Turbofox, Sable Systems) O₂ x 20.08 J/L all data = (maintenance) metabolic rate 20 lowest data points = resting metabolic rate | Requirement | Species | Value | Reference | |-------------|---------|--|------------------------| | MEm | Goat | 423-576 kJ kg ^{-0.75} d ⁻¹ | (GfE, 2003; NRC, 2007) | | | Sheep | 390-447 kJ kg ^{-0.75} d ⁻¹ | (GfE, 1996; NRC, 2007) | | | Cattle | 488-537 kJ kg ^{-0.75} d ⁻¹ | (GfE, 1995) | | Requirement | Species | Value | Reference | |-------------|---------|--|------------------------| | MEm | Goat | 423-576 kJ kg ^{-0.75} d ⁻¹ | (GfE, 2003; NRC, 2007) | | | Sheep | 390-447 kJ kg ^{-0.75} d ⁻¹ | (GfE, 1996; NRC, 2007) | | | Cattle | 488-537 kJ kg ^{-0.75} d ⁻¹ | (GfE, 1995) | | Species | MEm | MR | Standing
MR | Resting
MR | Fasting
MR | Source | Based on | |-------------------------------------|--------------------|----|----------------------------|-----------------|---------------|---|---| | | | | kJ kg ^{-0.75} day | y ⁻¹ | | | | | SAC | 305 | | | | | (Van Saun, 2006; NRC, 2007) | Literature data | | Alpaca
Alpaca
Alpaca | 297
276
440 | | | | | (Flores et al., 1989)
(Newman and Paterson, 1994)
(Russel and Redden, 1997) | Cited in: (López and Raggi, 1992; San Martín, 1996)
Intake & BM change
Intake & BM change | | Llama
Llama | 256 | | | | | (Schneider et al., 1974; Rübsamen
and von Engelhardt, 1975; von
Engelhardt and Schneider, 1977) | Intake & BM change, chamber respirometry | | Llama
Llama
Llama
Llama | 310-354
296-343 | | | | | (Carmean et al., 1992)
(Vernet et al., 1997) | Chamber respirometry & heat production
Chamber respirometry & heat production | | Dromedary
Dromedary
Dromedary | | | | | | | | | Dromedary
Dromedary | 359 | | | | | (Farid et al., 1990) | Intake & BM change | | Dromedary
Dromedary
Dromedary | 374
304 | | | | | (Farid, 1995)
(Guerouali et al., 1995) | Intake & BM change
Chamber respirometry & heat production | | Species | MEm | MR | Standing
MR | Resting
MR | Fasting
MR | Source | Based on | |---|--------------------|------------|----------------------------|--------------------------|---------------|---|--| | | | | kJ kg ^{-0.75} day | / ⁻¹ | | | | | SAC | 305 | | | | | (Van Saun, 2006; NRC, 2007) | Literature data | | Alpaca
Alpaca
Alpaca | 297
276
440 | | | | | (Flores et al., 1989)
(Newman and Paterson, 1994)
(Russel and Redden, 1997) | Cited in: (López and Raggi, 1992; San Martín, 1996)
Intake & BM change
Intake & BM change | | Llama | 256 | | | | 218 | (Schneider et al., 1974; Rübsamen
and von Engelhardt, 1975; von
Engelhardt and Schneider, 1977) | Intake & BM change, chamber respirometry | | Llama
Llama
Llama
Llama
Llama | 310-354
296-343 | 313
290 | 363
341 | | 248 | (El-Nouty et al., 1978)
(Hochachka et al., 1987)
(Carmean et al., 1992)
(Vernet et al., 1997)
(Nielsen et al., 2010) | Mask respirometry Mask respirometry Chamber respirometry & heat production Chamber respirometry & heat production Chamber respirometry | | Dromedary Dromedary Dromedary Dromedary Dromedary Dromedary Dromedary Dromedary | 359
374
304 | | 256
216
299 | 215
206
230
203 | 213 | (Schmidt-Nielsen et al., 1967)
(Schmidt-Nielsen et al., 1981)
(Yousef et al., 1989)
(Farid et al., 1990)
(Evans et al., 1994)
(Farid, 1995)
(Guerouali et al., 1995)
(Maloiy et al., 2009) | Mask respirometry Mask respirometry Mask respirometry Intake & BM change Mask respirometry Intake & BM change Chamber respirometry & heat production Mask respirometry | | Species | MEm | MR | Standing
MR | Resting
MR | Fasting
MR | Source | Based on | |----------------|--------------------|-----|----------------------------|---------------|---|---|--| | | e e | | kJ kg ^{-0.75} day | /-1 | *************************************** | . | | | SAC | 305 | | | | | (Van Saun, 2006; NRC, 2007) | Literature data | | Alpaca | 297 | | | | | (Flores et al., 1989) | Cited in: (López and Raggi, 1992; San Martín, 1996) | | Alpaca | 276 | | | | | (Newman and Paterson, 1994) | Intake & BM change | | Alpaca | 440 | | | | | (Russel and Redden, 1997) | Intake & BM change | | Alpaca | | 215 | | 144 | | this study | Chamber respirometry | | Llama | 256 | | | | 218 | (Schneider et al., 1974; Rübsamen
and von Engelhardt, 1975; von
Engelhardt and Schneider, 1977) | Intake & BM change, chamber respirometry | | Llama
Llama | | | 363
341 | | | (El-Nouty et al., 1978)
(Hochachka et al., 1987) | Mask respirometry Mask respirometry | | Llama
Llama | 310-354
296-343 | 313 | | | 248 | (Carmean et al., 1992)
(Vernet et al., 1997) | Chamber respirometry & heat production
Chamber respirometry & heat production | | Llama | | 290 | | | | (Nielsen et al., 2010) | Chamber respirometry | | Dromedary | | | | 215 | | (Schmidt-Nielsen et al., 1967) | Mask respirometry | | Dromedary | | | | 206 | | (Schmidt-Nielsen et al., 1981) | Mask respirometry | | Dromedary | | | 256 | 230 | | (Yousef et al., 1989) | Mask respirometry | | Dromedary | 359 | | | | | (Farid et al., 1990) | Intake & BM change | | Dromedary | | | 216 | 203 | | (Evans et al., 1994) | Mask respirometry | | Dromedary | 374 | | | | | (Farid, 1995) | Intake & BM change | | Dromedary | 304 | | | | 213 | (Guerouali et al., 1995) | Chamber respirometry & heat production | | Dromedary | | | 299 | | | (Maloiy et al., 2009) | Mask respirometry | | Species | MEm | MR | Standing
MR | Resting
MR | Fasting
MR | Source | Based on | |-------------------------------------|---|-----|----------------------------|-------------------|---------------|---|---| | | 8 | | kJ kg ^{-0.75} day | 7-1 | | • | | | SAC | 305 | | | | | (Van Saun, 2006; NRC, 2007) | Literature data | | Alpaca | 297 | | | | | (Flores et al., 1989) | Cited in: (López and Raggi, 1992; San Martín, 1996) | | Alpaca | 276 | | | | | (Newman and Paterson, 1994) | Intake & BM change | | Alpaca | 440 | | | | | (Russel and Redden, 1997) | Intake & BM change | | Alpaca | *************************************** | 215 | | 144 | | this study | Chamber respirometry | | Llama | 256 | | | | 218 | (Schneider et al., 1974; Rübsamen
and von Engelhardt, 1975; von
Engelhardt and Schneider, 1977) | Intake & BM change, chamber respirometry | | Llama | | | 363 | | | (El-Nouty et al., 1978) | Mask respirometry | | Llama | | | 341 | | | (Hochachka et al., 1987) | Mask respirometry | | Llama | 310-354 | | | | 248 | (Carmean et al., 1992) | Chamber respirometry & heat production | | Llama | 296-343 | 313 | | | | (Vernet et al., 1997) | Chamber respirometry & heat production | | Llama | | 290 | | | | (Nielsen et al., 2010) | Chamber respirometry | | Llama | | 261 | | 164 | | this study | Chamber respirometry | | Dromedary
Dromedary
Dromedary | | | 256 | 215
206
230 | | (Schmidt-Nielsen et al., 1967)
(Schmidt-Nielsen et al., 1981)
(Yousef et al., 1989) | Mask respirometry Mask respirometry Mask respirometry | | Dromedary | 359 | | | | | (Farid et al., 1990) | Intake & BM change | | Dromedary | | | 216 | 203 | | (Evans et al., 1994) | Mask respirometry | | Dromedary | 374 | | | | | (Farid, 1995) | Intake & BM change | | Dromedary | 304 | | | | 213 | (Guerouali et al., 1995) | Chamber respirometry & heat production | | Dromedary | | | 299 | | | (Maloiy et al., 2009) | Mask respirometry | | Species | MEm | MR | Standing
MR | Resting
MR | Fasting
MR | Source | Based on | |----------------|--------------------|-----|----------------------------|---------------|---------------|--|---| | | | | kJ kg ^{-0.75} day | 7-1 | | • | | | SAC | 305 | | | | | (Van Saun, 2006; NRC, 2007) | Literature data | | Alpaca | 297 | | | | | (Flores et al., 1989) | Cited in: (López and Raggi, 1992; San Martín, 1996) | | Alpaca | 276 | | | | | (Newman and Paterson, 1994) | Intake & BM change | | Alpaca | 440 | | | | | (Russel and Redden, 1997) | Intake & BM change | | Alpaca | | 215 | | 144 | | this study | Chamber respirometry | | 110000000 | | | | | | (Schneider et al., 1974; Rübsamen | | | Llama | 256 | | | | 218 | and von Engelhardt, 1975; von
Engelhardt and Schneider, 1977) | Intake & BM change, chamber respirometry | | Llama | | | 363 | | | (El-Nouty et al., 1978) | Mask respirometry | | Llama | | | 341 | | | (Hochachka et al., 1987) | Mask respirometry | | Llama | 310-354 | | 9.71 | | 248 | (Carmean et al., 1992) | Chamber respirometry & heat production | | Llama | 296-343 | 313 | | | 2-10 | (Vernet et al., 1997) | Chamber respirometry & heat production | | Llama | (m) 10 m(1 m (2 m) | 290 | | | | (Nielsen et al., 2010) | Chamber respirometry | | Llama | | 261 | | 164 | | this study | Chamber respirometry | | Dromedary | | | | 215 | | (Schmidt-Nielsen et al., 1967) | Mask respirometry | | Dromedary | | | | 206 | | (Schmidt-Nielsen et al., 1981) | Mask respirometry | | Dromedary | | | 256 | 230 | | (Yousef et al., 1989) | Mask respirometry | | Dromedary | 359 | | | | | (Farid et al., 1990) | Intake & BM change | | Dromedary | | | 216 | 203 | | (Evans et al., 1994) | Mask respirometry | | Dromedary | 374 | | | | | (Farid, 1995) | Intake & BM change | | Dromedary | 304 | | | | 213 | (Guerouali et al., 1995) | Chamber respirometry & heat production | | Dromedary | | | 299 | | | (Maloiy et al., 2009) | Mask respirometry | | Bactrian camel | | 248 | | 192 | | this study | Chamber respirometry | #### Conclusions Both ad libitum intake and maintenance energy recommendations/ metabolism measurements support a lower metabolism in camelids as compared to domestic ruminants. This could explain various observations incl. the competitive capacity of camelids in resource-poor environments. Distinct variability in metabolism measurements could be an indicator of methodological issues or seasonality effects.