

Digestive anatomy and physiology of zoo mammals: herbivores

Marcus Clauss

Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland

Belo Horizonte 2019

Herbivory

- Vertebrates cannot digest plant fibre by their own enzymes (aut-enzymatically); they have to rely on symbiotic gut microflora (allo-enzymatic digestion).
- Bacterial digestion = 'Fermentation'
- The host has to supply this microflora with a habitat (so-called 'fermentation chambers').

Herbivory ...

- ... is no logistical challenge
- ... but a digestive one!

 Catching plants is easy - digesting plants is the hard part!

Omnivore

Hindgut Fermentation - Caecum

Hindgut Fermentation - Caecum

Propithecus tattersalli

Propithecus verreauxi

Lemur catta

Varecia variegata

Caecum form and function: gummivory

Gums dominate, insects important, fruit can depend on location

Insects and fruit dominate, gums and nectar seasonally important

Callithrix 1 4 1

Saguinus

Power et al. (1990), Ferrari & Martins

Herbivores - Colon fermenters

Herbivores - Colon fermenters

Gorilla gorilla

Photo: M. Clauss

Hindgut Fermentation - Colon

Digestive tract

Digestive tract

from Clauss et al. (2007)

Digestive tract

from Clauss et al. (2007)

Foregut Fermentation

Foregut Fermentation

Herbivores - Foregut fermenters

from Schwarm et al. (2010) Photo: A. Schwarm

Foregut Fermentation - Ruminant

Foregut/Hindgut Fermenters

With the majority of rodent species un-studied, we have not grasped the variability, and adaptive significance, of foregut and hindgut fermentation yet.

Demon mole rat (Tachyoryctes daemon) papillated forestomach

Foregut/Hindgut Fermenters

With the majority of rodent species un-studied, we have not grasped the variability, and adaptive significance, of foregut

and hindgut fermentation yet.

Laotian rock rat (Laonastes aenigmamus) kangoroo-like forestomach

Herbivores - Hyrax

from Stevens und Hume (1995)

Which system is 'more successful'?

Bacteria ferment the

diet (rest) ...

... and produce volatile fatty acids

Bacteria ferment the

diet (rest) ...

... **prior to** small intestine

... **after** small intestine

Bacteria ferment the

diet (rest) ...

... and modify it before own digestion

... after diet has been digested un-modified

Bacteria ferment the

diet (rest) ...

... and modify it before own digestion

enzymatic digestion of processed material ... after diet has been digested un-modified

> enzymatic' digestion of diet

Saturation of body fat

A forestomach has a problem: no milk must get in!

milk is fermented by bacteria – acidosis milk is digested directly

Deviation for milk

Deviation for milk

Deviation for milk

from Langer (1988) Photos A. Schwarm

Digestion

Forestomach: Bacteria digest

(from Grau 1955)

Functions of any forestomach

1. Fermentation of plant fibre by bacteria

Foregut vs. Hindgut: Calcium

Phosphorus is supplied directly to microbes via saliva

In order to guarantee phosphorus availability in the hindgut, calcium is actively absorbed from ingesta and excreted via urine

Foregut vs. Hindgut: Calcium

In order to guarantee phosphorus availability in the hindgut, calcium is actively absorbed from ingesta and excreted via urine

Bacteria digest the

diet (rest) ...

... and are digested

... and are excreted

Bacteria digest the diet (rest) ...

... and are digested

Foregut fermenters are 'bacteria farmers'.

Bacteria digest the diet (rest) ...

... and are digested

Foregut fermenters are 'bacteria farmers'.

How can you maximise bacteria harvest?

Flush!

Where do you get the fluid from?

Saliva!

Flushing the forestomach

Schwarm et al. (2008,2009)

Functions of any forestomach

Bacteria digest the

diet (rest) ...

... and are digested

... or reingested and digested

Coprophagy