

# Developing a black rhino diet for Zurich Zoo

Marcus Clauss (J.-M. Hatt, D. Ranz)

Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich,

Switzerland

EAZA Acadmey Liberec 2017









Iron storage disease a problem in black rhinos

Journal of Zoo and Wildlife Medicine 43(3): S92-S104, 2012 Copyright 2012 by American Association of Zoo Veterinarians

REVIEW OF LABORATORY AND NECROPSY EVIDENCE FOR IRON STORAGE DISEASE ACQUIRED BY BROWSER RHINOCEROSES

Donald E. Paglia, M.D., and I-Hsien Tsu, M.S.



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)

Comparison of the chemical composition of the diet of three free-ranging black rhinoceros (*Diceros bicornis*) populations with zoo diets

S. F. Helary<sup>1</sup>, N. Owen-Smith<sup>1</sup>, J. A. Shaw<sup>1</sup>, D. Brown, D. Hattas<sup>2</sup>



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)

# Comparison of the chemical composition of the diet

Journal of Zoo and Wildlife Medicine 43(3): S48-S54, 2012 Copyright 2012 by American Association of Zoo Veterinarians

S. F. BLACK RHINOCEROS (DICEROS BICORNIS) NATURAL DIETS:
COMPARING IRON LEVELS ACROSS SEASONS AND
GEOGRAPHICAL LOCATIONS

Stephane F. Helary, med.vet., M.Sc., Joanne A. Shaw, Ph.D., Derek Brown, Marcus Clauss, M.Sc., Dr.med.vet., Dipl. E.C.V.C.N., and Norman Owen-Smith, Ph.D.



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)

Of three free-ranging black rhinoceros (Diceros Journal of Zoo and Wildlife

Journal of Zoo and Wildlife Medicine 43(3): S48-S54, 2012 Copyright 2012 by American Association of Zoo Veterinarians

S. F. BLACK RHINOCEROS (DICEROS BICORNIS) NATURAL DIETS:
COMPARING IRON LEVELS ACROSS SEASONS AND
GEOGRAPHICAL LOCATIONS

Stephane F Dr.med.vet

ORIGINAL ARTICLE

Mineral absorption in the black rhinoceros (*Diceros bicornis*) as compared with the domestic horse

M. Clauss<sup>1</sup>, J. C. Castell<sup>2</sup>, E. Kienzle<sup>2</sup>, P. Schramel<sup>3</sup>, E. S. Dierenfeld<sup>4</sup>, E. J. Flach<sup>5</sup>, O. Behlert<sup>6</sup>, W. J. Streich<sup>7</sup>, J. Hummel<sup>6,8</sup> and J-M. Hatt<sup>1</sup>



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)





- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)
- Tannins (as in natural diet) act as iron chelators

Journal of Zoo and Wildlife Medicine 43(3): S74-S82, 2012 Copyright 2012 by American Association of Zoo Veterinarians

#### PLANT PHENOLICS AND THEIR POTENTIAL ROLE IN MITIGATING IRON OVERLOAD DISORDER IN WILD ANIMALS

Shana R. Lavin, M.S., Ph.D.



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)
- Tannins (as in natural diet) act as iron chelators
- Tannins without apparent adverse (but some positive) effects in feeding trials

DOI: 10.1111/j.1439-0396.2006.00673.x

ORIGINAL ARTICLE

The influence of dietary tannin supplementation on digestive performance in captive black rhinoceros (*Diceros bicornis*)

M. Clauss<sup>1</sup>, J. C. Castell<sup>2</sup>, E. Kienzle<sup>2</sup>, E. S. Dierenfeld<sup>3</sup>, E. J. Flach<sup>4</sup>, O. Behlert<sup>5</sup>, S. Ortmann<sup>6</sup>, W. J. Streich<sup>6</sup>, J. Hummel<sup>5,7</sup> and J.-M. Hatt<sup>1</sup>



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)
- Tannins (as in natural diet) act as iron chelators
- Tannins without apparent adverse (but some positive) effects in feeding trials

DOI: 10.1111/j.1439-0396.2006.00673.x

ORIGINAL A

## The influperform

M. Clauss<sup>1</sup>, J. W. J. Streich<sup>6</sup> J. Vet. Med. A **53**, 319–322 (2006) © 2006 The Authors Journal compilation © 2006 Blackwell Verlag, Berlin ISSN 0931–184X

Division of Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland

Antioxidant Status of Faeces of Captive Black Rhinoceros (*Diceros bicornis*) in Relation to Dietary Tannin Supplementation

M. Clauss<sup>1,8</sup>, N. Pellegrini<sup>2</sup>, J. C. Castell<sup>3</sup>, E. Kienzle<sup>3</sup>, E. S. Dierenfeld<sup>4</sup>, J. Hummel<sup>5</sup>, E. J. Flach<sup>6</sup>, W. J. Streich<sup>7</sup> and J.-M. Hatt<sup>1</sup>



- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)
- Tannins (as in natural diet) act as iron chelators
- Tannins without apparent adverse (but some positive) effects in feeding trials





- Iron storage disease a problem in black rhinos
- Zoo diets differ from natural diets (less fibre, more iron, less tannins, less PUFA)
- Tannins (as in natural diet) act as iron chelators
- Tannins without apparent adverse (but some positive) effects in feeding trials
- => what tannin source should we use?





#### PLANT PHENOLICS AND THEIR POTENTIAL ROLE IN MITIGATING IRON OVERLOAD DISORDER IN WILD ANIMALS

Shana R. Lavin, M.S., Ph.D.

Specifically,

it is recommended to compare palatable, 14,16 low-cost, and commercially available products in terms of relative affinities for iron to determine if an appropriate dietary supplement exists for minimizing iron absorption in wild animals sensitive to IOD. Potential sources of phenolic supplements include grape pomace



# Animal Physiology and Animal Nutrition

DOI: 10.1111/jpn.12587

ORIGINAL ARTICLE

# Black rhinoceros (Diceros bicornis) and domestic horse (Equus caballus) hindgut microflora demonstrate similar fermentation responses to grape seed extract supplementation in vitro

N. F. Huntley<sup>1</sup>, H. D. Naumann<sup>2</sup>, A. L. Kenny<sup>1</sup> and M. S. Kerley<sup>1</sup>

Grape seed extract was found to be an effective iron chelator, and supplementation in black rhinoceros diets up to 4% of DM is unlikely to adversely affect macronutrient hindgut digestibility or microbial viability and fermentation. In vivo trials are needed to determine supplementation levels necessary to limit iron absorption and tissue accumulation in captive black rhinoceros.



#### **Aims**

- Readily available source of tannins -> red grape pomace
- forage base (also good for PUFA) -> lucerne meal or grass meal
- low iron components -> excludes grass meal
- use fermentable fibre rather than starch -> beet pulp
- no iron added





#### Nashorn und andere Pflanzenfresser Rhinocéros et autres herbovores Rhinoceros and other herbivores

Ergänzung Complément Supplement

Zoo-Nashornpellets | Pellets pour rhinocéros de zoos | Pellets for rhinoceros in zoos

| Inhaltsstoffe   Substances   Major Nutrients                              |                    | Rohstoffe   Ingrédients   Ingredients                                                                  |
|---------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|
| rockensubstanz   Matière sèche   Dry matter                               | 90.0 %             | Luzernemehl, Traubentrester, Rübenschnitzel, Melasse, Weizenkleie                                      |
| Rohprotein   Protéines brutes   Crude protein                             | 13.5 %             | Hafer, Sojaextraktionsschrot (NGVO), Mais (NGVO), Mineralstoffe, Vita-                                 |
| Rohfett   Graisses brutes   Crude fat                                     | 2.8 %              | mine                                                                                                   |
| Rohfaser   Fibres brutes   Crude fiber                                    | 21.0 %             |                                                                                                        |
| Rohasche   Cendres brutes   Crude ash                                     | 10.0 %             | Farine de luzerne, marc de raisins, pulpe de betterave, mélasse, sor                                   |
| NFE   ENA   NFE                                                           | 42.7 %             | de blé, avoine, tourteau d'extraction de soja (sans OGM), maïs (sans                                   |
| Bruttoenergie   Energie brute   Gross energy                              | 14.8 MJ/kg         | OGM), substances minérales, vitamines                                                                  |
| Verdaubare Energie   Energie digestible   Digestible                      |                    | Alfalfa, grape pomace, beet pulp, molasses, wheat middlings, oats                                      |
| Stärke   Amidon   Starch                                                  | 2.0 %              | soybean meal (NGMO), corn (NGMO), minerals, vitamins                                                   |
| Aminosäuren   Acides aminés   Amino acids                                 |                    | Bemerkungen   Remarques   Remarks                                                                      |
|                                                                           |                    | - Eisenreduziertes Ergänzungsfuttermittel für Dickdarmverdauer und                                     |
| Arginin   Arginine   Arginine                                             | 0.65 %             | andere Pflanzenfresser                                                                                 |
| Lysin   Lysine   Lysine                                                   | 0.60 %<br>0.18 %   | - Angegebene Gehalte sind berechnete Mittelwerte bezogen auf luft-                                     |
| Methionin   Méthionine   Methionine                                       |                    | trockene Substanz                                                                                      |
| Methionin + Cystin   Méthionine + cystine   Methioni                      |                    | - NDF: 33.8 %                                                                                          |
| Tryptophan   Tryptophane   Tryptophan<br>Threonin   Thréonine   Threonine | 0.15 %<br>0.46 %   | - ADF: 24.7 %                                                                                          |
|                                                                           | X50000000          | - Aliment complémentaire, pauvre en fer, pour animaux, dont la fer-                                    |
| Mengenelemente   Macro-éléments   Major                                   | mineral elements   | mentation se fait dans le gros intestin et autres herbivores                                           |
| Calcium  Calcium   Calcium                                                | 0.85 %             | - Les teneurs indiquées sont des valeurs moyennes se rapportant à la                                   |
| Phosphor   Phosphore   Phosphorus                                         | 0.65 %             | matière séchée à l'air                                                                                 |
| Magnesium   Magnésium   Magnesium                                         | 0.25 %             | - NDF: 33.8 %                                                                                          |
| Natrium   Sodium   Sodium                                                 | 0.95 %             | - ADF: 24.7 %                                                                                          |
| Kalium   Potassium   Potassium                                            | 1.45 %             |                                                                                                        |
| Chlor   Chlore   Chlorine                                                 | 1.15 %             | <ul> <li>Low iron supplementary animal feed for hindgut fermenters and<br/>other herbivores</li> </ul> |
| Spurenelemente   Oligo-éléments   Trace el                                | ements             | - Given values are calculated averages in air-dry feed                                                 |
| Eisen   Fer   Iron                                                        | 400 mg/kg          | - NDF: 33.8 %                                                                                          |
| Zink   Zinc   Zinc                                                        | 175 mg/kg          | - ADF: 24.7 %                                                                                          |
| Kupfer   Cuivre   Copper                                                  | 34 mg/kg           | Bestellform   Conditionnements   Delivery form                                                         |
| Jod   lode   lodine                                                       | 1.20 mg/kg         |                                                                                                        |
| Mangan   Manganèse   Manganese                                            | 42 mg/kg           | Pellets 8 mm rund   Pellets ronds 8 mm   Pellets 8 mm round                                            |
| Selen   Sélénium   Selenium                                               | 0.35 mg/kg         | 3695.PD.S25:                                                                                           |
| Wa                                                                        |                    | 25 kg in Papiersäcken                                                                                  |
| Vitamine   Vitamines   Vitamins                                           |                    | 25 kg en sacs en papier                                                                                |
| Vitamin A   Vitamine A   Vitamin A                                        | 29'000 IE UI IU/kg | 25 kg in paper bags                                                                                    |
| Vitamin D <sub>3</sub>   Vitamine D <sub>3</sub>   Vitamin D <sub>3</sub> | 1'000  E U  IU/kg  |                                                                                                        |
| Vitamin E   Vitamine E   Vitamin E                                        | 850 mg/kg          |                                                                                                        |
| Vitamin K <sub>3</sub>   Vitamine K <sub>3</sub>   Vitamin K <sub>3</sub> | 5 mg/kg            |                                                                                                        |
| Vitamin B <sub>1</sub>   Vitamine B <sub>1</sub>   Vitamin B <sub>1</sub> | 5 mg/kg            |                                                                                                        |
| Vitamin B2   Vitamine B2   Vitamin B2                                     | 14.5 mg/kg         |                                                                                                        |
| Vitamin B6   Vitamine B6   Vitamin B6                                     | 9.5 mg/kg          |                                                                                                        |
| Vitamin B12   Vitamine B12   Vitamin B12                                  | 0.03 mg/kg         |                                                                                                        |
| Nicotinsäure   Acide nicotinique   Nicotinic acid                         | 105 mg/kg          |                                                                                                        |
| Pantothensäure   Acide pantothénique   Pantothe                           | enic acid 45 mg/kg |                                                                                                        |
| Folsäure   Acide folique   Folic acid                                     | 3 mg/kg            |                                                                                                        |
| Biotin   Biotine   Biotin                                                 | 0.75 mg/kg         |                                                                                                        |
| Cholin   Choline   Choline                                                | 740 mg/kg          | Cy                                                                                                     |
| Vitamin C   Vitamine C   Vitamin C                                        | 15 mg/kg           | 3                                                                                                      |

16/200

KLIBA NAFAG | PROVIMI KLIBA AG | CH-4303 Kaiseraugst | Tel. +41 61 816 16 16 | Fax +41 61 816 18 00 | kliba-nafag@provimi-kliba.ch | www.kliba-nafag.ch





Nashorn und andere Pflanzenfresser Rhinocéros et autres herbovores Rhinoceros and other herbivores Ergänzung Complément Supplement

Zoo-Nashornpellets | Pellets pour rhinocéros de zoos | Pellets for rhinoceros in zoos

- Low iron supplementary animal feed for hindgut fermenters and other herbivores
- Given values are calculated averages in air-dry feed
- NDF: 33.8 %
- ADF: 24.7 %





Nashorn und andere Pflanzenfresser Rhinocéros et autres herbovores Rhinoceros and other herbivores Ergänzung Complément Supplement

Zoo-Nashornpellets | Pellets pour rhinocéros de zoos | Pellets for rhinoceros in zoos

#### Rohstoffe | Ingrédients | Ingredients

Luzernemehl, Traubentrester, Rübenschnitzel, Melasse, Weizenkleie, Hafer, Sojaextraktionsschrot (NGVO), Mais (NGVO), Mineralstoffe, Vitamine

Farine de luzerne, marc de raisins, pulpe de betterave, mélasse, son de blé, avoine, tourteau d'extraction de soja (sans OGM), maïs (sans OGM), substances minérales, vitamines

Alfalfa, grape pomace, beet pulp, molasses, wheat middlings, oats, soybean meal (NGMO), corn (NGMO), minerals, vitamins





Nashorn und andere Pflanzenfresser Rhinocéros et autres herbovores Rhinoceros and other herbivores Ergänzung Complément Supplement

Zoo-Nashornpellets | Pellets pour rhinocéros de zoos | Pellets for rhinoceros in zoos

## **Inhaltsstoffe | Substances | Major Nutrients**

| Trockensubstanz   Matière sèche   Dry matter                | 90.0 %     |
|-------------------------------------------------------------|------------|
| Rohprotein   Protéines brutes   Crude protein               | 13.5 %     |
| Rohfett   Graisses brutes   Crude fat                       | 2.8 %      |
| Rohfaser   Fibres brutes   Crude fiber                      | 21.0 %     |
| Rohasche   Cendres brutes   Crude ash                       | 10.0 %     |
| NfE   ENA   NFE                                             | 42.7 %     |
| Bruttoenergie   Energie brute   Gross energy                | 14.8 MJ/kg |
| Verdaubare Energie   Energie digestible   Digestible energy | 10.3 MJ/kg |
| Stärke   Amidon   Starch                                    | 2.0 %      |





Nashorn und andere Pflanzenfresser Rhinocéros et autres herbovores Rhinoceros and other herbivores Ergänzung Complément Supplement

Zoo-Nashornpellets | Pellets pour rhinocéros de zoos | Pellets for rhinoceros in zoos

## **Spurenelemente | Oligo-éléments | Trace elements**

| Eisen   Fer   Iron             | 400 mg/kg  |
|--------------------------------|------------|
| Zink   Zinc   Zinc             | 175 mg/kg  |
| Kupfer   Cuivre   Copper       | 34 mg/kg   |
| Jod   lode   lodine            | 1.20 mg/kg |
| Mangan   Manganèse   Manganese | 42 mg/kg   |
| Selen   Sélénium   Selenium    | 0.35 mg/kg |





**HERBIVORES** 

## Rhino and tapir

Suitable for: Rhino and tapir

#### YOUR BENEFITS

- A recipe low in iron with naturally low-iron raw materials and manufactured without additional iron supplementation for black rhinos and tapirs
- Also a suitable recipe for white rhinos
- High content of pectins through beet pulp and grape marc
- ♦ Supplemented with vitamin E and selenium

We are happy to work with you to create an individual feeding recommendation



#### TYPE OF FEED, FORM, DELIVERY QUANTITY

- supplementary feed
- Form: pellet 8 mm round
- Delivery quantity: 25 kg paper bag pallets of 750kg

#### **FEED SPECIFICATIONS**

Maior nutrients (%)

| 1114,01 11401101100 (10) |      | 11446 01011101100 (     |      |
|--------------------------|------|-------------------------|------|
| Dry matter               | 90   | Iron                    | 400  |
| Crude protein            | 13.5 | Zinc                    | 175  |
| Crude fat                | 2.8  | Copper                  | 34   |
| Crude fiber              | 18   | Iodine                  | 1.2  |
| Crude ash                | 10   | Manganese               | 42   |
| NFE                      | 42.7 | Selenium                | 0.4  |
| NDF                      | 31.6 | Cobalt                  | 0.3  |
| ADF                      | 22.6 |                         |      |
| Starch                   | 2.4  |                         |      |
| Sugar                    | 5.1  | Vitamins (added, mg/kg) |      |
|                          |      | Vitamin A (IU/KG)       | 6500 |
| Energy (MJ/kg)           |      | Vitamin D3 (IU/KG)      | 1000 |
| Elici Sy (MJ/Kg)         |      | Vitamin E               | 850  |
| Gross energy             | 16   | Vitamin K3              | 5    |
| Digestible energy        | 10.2 | Vitamin B1              | 5    |
| 3                        |      | Vitamin B2              | 14.5 |
|                          |      | Vitamin B6              | 9.5  |
| Macrominerals (%)        |      | Vitamin B12             | 0.03 |
| Calcium                  | 0.0  | Nicotinic acid          | 105  |
|                          | 0.9  | Pantothenic acid        | 45   |
| Phosphorus               | 0.7  | Folic acid              | 3    |
| Magnesium                | 0.3  | Biotin                  | 0.8  |
| Sodium                   | 1    | Cholino                 | 7/.0 |

Trace elements (mg/kg)

#### Amino acids (%)

| Arginine             | 0.65 |
|----------------------|------|
| Lysine               | 0.6  |
| Methionine           | 0.18 |
| Methionine + Cystine | 0.37 |
| Tryptophan           | 0.15 |
| Threonine            | 0.46 |

#### **Ingredients**

Alfalfa, grape marc, beet pulp, wheat bran, molasses, minerals, soybean meal (NGMO), vitamins.

#### Remarks

- ♦ Given values are calculated averages in air-dry feed.
- Gross energy calculated according to Kamphues et al. 2009
- Digestible energy calculated according to NRC Horses 2007
- Nutrients are subject to natural variation of the raw materials and their production process.

#### **OUR FEED RECOMMENDATION**

• The feed is suitable for supplementing a balanced basic diet in terms of protein and energy.

Choline

Vitamin C

- Always provide free access to fresh drinking water.
- ♦ Benchmark: 0.3% -1% of body weight per day

We are happy to work with you to create individual feeding recommendations for the respective species

#### ources:

Potassium

Chlorine

Clauss, M. et al. (2005). A contribution to the trace element nutrition of captive black rhinoceroses (Diceros bicornis). Nutrition Advisory Groups Proceedings.

Castell, J. (2005). Dissertation. Untersuchungen zu Fütterung und Verdauungsphysiologie am Spitzmaulnashorn (Diceros bicornis). Institut für Physiologie, Physiologische Chemie und Tierernährung der Tierärztlichen Fakultät der Ludwig-Maximillans-Universität München (Institute for Physiology, Physiological Chemistry and Animal Nutrition at the Veterinary Faculty of the Ludwig-Maximillan University of Munich).

Kamphues, J. et al. (2009). Supplemente zu Vorlesungen und Übungen in der Tierernährung, 11. Auflage, M.&H. Schaper, Hannover Litzenich, B. A., Ward, A. M. (September 1997). Hay and Pellet Rations: Considerations in Feeding Ungulates. Nutrition Advisory Group Handbook, Fact Sheet 006.

National Research Council (2007). Nutrient Requirements of Horses, 6th rev. edition, National Academies Press, Washington DC, S. 4



## Experiences

- no formal assessment by digestion study or (the really important) long-term study
- no acceptance problems
- no clinical problems observed in black rhinos
- black rhino husbandry at Zurich Zoo discontinued for other reasons
- nutritional logic should apply for tapirs as well