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Comparative physiology

» Understanding adaptations by the
comparative method

from Hofmann (1989)
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What comparative digestive physiology can offer
to domestic ruminant research




What comparative digestive physiology can offer
to domestic ruminant research

* Understanding where domestic ruminants

from Agnarsson et al. (2008)



What comparative digestive physiology can offer
to domestic ruminant research

* Understanding where domestic ruminants

... and where they might be
taken to in the future

from Agnarsson et al. (2008)



(from Nickel-Schummer-Seiferle 1967)



(from Nickel-Schummer-Seiferle 1967)



(from Nickel-Schummer-Seiferle 1967)



(from Hofmann & Schnorr1982)
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Reticulum Rumen
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(from Nickel-Schummer-Seiferle 1967)




(from Nickel-Schummer-Seiferle 1967)



Omasum

(from Nickel-Schummer-Seiferle 1967)



(from Nickel-Schummer-Seiferle 1967)



Omasum

Abomasum /

(from Nickel-Schummer-Seiferle 1967)



Passage kinetics of markers: ‘cattle-type’
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from Lechner et al. (2010)



Passage kinetics of markers: ‘cattle-type’

from Lechner et al. (2010)



Passage kinetics of markers: ‘cattle-type’
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Passage kinetics of markers: ‘cattle-type’
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Stratification of rumen contents: ‘cattle-type’
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from Clauss et al. (2003)



Stratification of rumen contents: ‘cattle-type’
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from Hummel et al. (2009)



Stratification of rumen contents: ‘cattle-type’

from Clauss et al. (2010)



Rumen of addax -
a grazer

S et al. (2009)



Stratification of rumen contents
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Testing stratification by ultrasound - cattle

from Tschuor & Clauss (2008)



Stratification and rumen papillation




Stratification and rumen papillation

from Clauss et al. (2010)



Stratification and rumen papillation
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from Clauss, Hofmann et al. (2009)



until 1970:

All ruminants are similar and
function as cattle and sheep.




The Ruminant

EAST AFRICAN MONOGRAPHS IN BIOLOGY
VOLUME 2

Stomach

Stomach Structure and Feeding Habits
of East African Game Ruminants

R. R. HOFMANN,
Dr. med. vet. (Giessen), Professor of Veterinary
Anatomy, Histology and Embryology.

EAST AFRICAN LITERATURE BUREAU

from Hofmann (1973)



from Hofmann (1973)
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from Hofmann (1973)
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Ruminant feeding types (Hofmann)
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Ruminant feeding types (Hofmann)

from Hofmann (1989)



Ruminant feeding types (Hofmann)

from Hofmann (1991)



Ruminant feeding types (Hofmann)
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Ruminant feeding types (Hofmann)

from Hofmann (1985)



Occologia (1989) 78:443-457

Oecologia

© Springer-Verlag 1989

Evolutionary steps of ecophysiological adaptation

and diversification of ruminants:

a comparative view of their digestive system *-**

R.R. Hofmann

Institut fiir Veterindr-Anatomie, -Histologic und -Embryologie, Abteilung Vergleichende Anatomie der Haus- und Wildtiere,
Justus-Liebig-Universitit Giessen, D-6300 Giessen, Federal Republic of Germany

Summary. A review is made of the ruminant digestive sys-
tem in its morphophysiological variations and adaptations
relating to foraging behaviour, digestive physiology, to in-
teractions between plants and ruminants and to geographic
and climatic diversity of ruminants’ ecological niches. Evi-
dence is provided for evolutionary trends from an extreme
selectivity mainly for plant cell contents and dependence
upon a fractionated fore- and hindgut fermentation, to an
unselective intake of bulk roughage subjected to an efficient
plant cell wall fermentation, mainly in the forestomachs.
The review is based on detailed comparative morphological
studies of all portions of the digestive system of 65 ruminant
species from four continents. Their results are related to
physiological evidence and to the classification of all extant
ruminants into a flexible system of three overlapping mor-
phophysiological feeding types: concentrate selectors
(40%), grass and roughage eaters (25%) and intermediate,
opportunistic, mixed feeders (35%). Several examples are
discussed how ruminants of different feeding types are gain-
ing ecological advantage and it is concluded that ruminants
have achieved high levels of digestive efficiency at each evo-
lutionary stage, (including well-documented seasonal adap-
tations of the digestive system) and that ruminant evolution
is still going on. Deductions made from the few domesti-
cated ruminant species may have, in the past, biased scien-
tific evaluation of the free-ranging species’ ecology. The
main threat to a continuous ruminant evolution and diver-
sity appears to be man’s neglect for essential ecological in-
teractions between wild ruminants and their specific habi-
tats, which he alters or destroys.

Key words: Wild ruminants — Digestive system — Morpho-
physiological adaptation — Evolutionary trends — Plant-her-
bivore interactions

* Supported by German Research Community grant DFG Ho
273/6

** Dedicated to Professor Dr. Dr. h.c. Dietrich Starck on the occa-
sion of his 80th birthday

Abbreviations : bw body weight; CS concentrate selector; DFC dis-
tal fermentation chamber (distended caecocolon); GR grass and
roughage eater; IM intcrmediate (mixed) feeder; PFC proximal
fermentation chamber (ruminoreticulum/forestomachs); RR Ru-
minoreticulum; SCFA Short-chain fatty acis (acetic, butyric, pro-
pionic acid set free by rumen bacteriac); SE Surface enlargement
(of absorptive mucosa)

Our growing scientific knowledge of the nutritional physiol-
ogy of ruminants is documented in a vast number of publi-
cations annually, and every five years more than 600 re-
searchers from all over the world meet in a different place
to review and present new results. They discuss highly spe-
cialised aspects of physiology, metabolism, nutrition, bio-
chemistry and digestive problems of these remarkable mam-
mals — yet very few of them or of the thousands of others
who deal scientifically with ruminants appear to be con-
cerned that almost all of their results, their methods and
models are based on merely two out of 150 species of extant
ruminants. These two are sheep and cattle. Much fewer
physiological and nutritional data available refer to the goat
and far fewer still to the Asiatic water buffalo. Compared
to all this, experimental data on wild African bovids, Eura-
sian cervids or American deer (let alone such oddities as
the pronghorn “antelope”, the giraffe or the musk ox —
all of which are ruminants) cannot even be regarded as
minimal. However, each new study on ruminants other than
cattle, sheep and goats shakes the established ruminant im-
age. It is different, though similar.

Ruminants are animals important to man. Some species
are bioindicators of the first order in polluted human envi-
ronments. More species are living barometers of man’s in-
ability to understand and handle ecological interactions and
most, if not all ruminant species can benefit nutritionally
from what man cannot digest.

Because they convert apparently indigestible carbohy-
drates and chemically trapped or protected proteins into
nutritious and useful products, they deserve more than one
approach. Ruminants are late-comers in evolution. Their
stomach is a phylogenetic peak of complexity, not only
compared with our own digestive tract.

But it is wrong to define ruminants simply as specialised
fermentation machines which break down cellulose after
chewing the cud.

Their digestive physiology is not based on an “all or
nothing™ principle and none of them is “primitive”, al-
though embryological evidence strongly suggests that roe
deer or white-tailed deer, dik-diks or muntjac, kudu or
moose are “older”, earlier and still inefficient in breaking
down cellulose. It will be shown, that ruminant evolution
in the light of todays’ 150 living species is certainly ““a bush,
not a ladder” (Gould 1986). It has produced a fascinating
array of animal forms ranging from 3 kg to over 1000

> 750 citations
(and counting)




Differences between the feeding types

from Hofmann (1989)
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Convergence of Macroscopic Tongue Anatomy in
Ruminants and Scaling Relationships with Body Mass

or Tongue Length
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Enamel ridge alignment in upper molars of ruminants in
relation to their natural diet

T. M. Kaiser’, J. Fickel?, W. J. Streich?, J. Hummel® & M. Clauss*
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DISCOVER SOMETHING GREAT

Convergent Evolution in Feeding Types: Salivary Gland
Mass Differences in Wild Ruminant Species

Reinold R. Hofmann,! W. Jiirgen Streich,! Jorns Fickel,! Jirgen Hummel,2 and Marcus Clauss®*
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Convergence in the macroscopic anatomy of the reticulum
in wild ruminant species of different feeding types and a
new resulting hypothesis on reticular function

M. Clauss’, R. R. Hofmann?*, W. J. Streich?3, J. Fickel® & J. Hummel*
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Macroscopic anatomy of the omasum of free-ranging moose

(Alces alces) and muskoxen (Ovibos moschatus) and a
comparison of the omasal laminal surface area in
34 ruminant species
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Sequence of hypotheses

Soft tissue variation and forestomach physiology is
linked to

diet fibre content ?




Evolutionary steps of ecophysiological adaptation
and diversification of ruminants:
a comparative view of their digestive system * **

R.R. Hofmann

from Hofmann (1989)




Evolutionary steps of ecophysiological adaptation
and diversification of ruminants:
a comparative view of their digestive system * **

R.R. Hofmann
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from Hofmann (1989)




Do diets of grazers and browsers really differ?
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Do diets of grazers and browsers really differ?

Crude fibre in
rumen contents
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No stratification - even rumen papillation

from Clauss, Hofmann et al. (2009)



Stratification and rumen papillation

Blackbuck  Pére David's African
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from Clauss, Hofmann et al. (2009)



Stratification and rumen papillation

Giraffe White- Bushbuck Blackbuck Pére David's African
tailed deer deer buffalo

dorsal

Atrium

ventral

from Clauss, Hofmann et al. (2009)



Stratification and rumen papillation

Giraffe White- Bushbuck Fallow deer Thomson Goat Blackbuck Pére David's African
tailed deer buffalo
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from Clauss, Hofmann et al. (2009)



A measure of ‘stratification’

from Clauss et al. (2009)



No stratification of rumen contents: ‘moose-type’

from Clauss et al. (2010)



No stratification of rumen contents: ‘moose-type’

from Clauss et al. (2010)



Stratification of rumen contents




Stratification of rumen contents
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from Clauss et al. (2010)



Another measure of ‘stratification’

from Clauss et al. (2009)



Testing stratification by ultrasound - moose

from Tschuor & Clauss (2008)



Passage kinetics of markers: ‘moose-type’
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from Lechner et al. (2010)



Passage kinetics of markers: ‘moose-type’

from Lechner et al. (2010)



Passage kinetics of markers: ‘moose-type’
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Passage kinetics of markers: ‘moose-type’
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Passage kinetics of markers: ‘moose-type’
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Passage kinetics of markers:
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from Dittmann et al. (2015)



Passage kinetics of markers: ‘moose-type’

from Dittmann et al. (2015)



Passage kinetics of markers: ‘catile-type’

from Dittmann et al. (2015)



Another measure of ‘stratification’

from Dittmann et al. (2015)



Three measures of ‘stratification’

from Clauss et al. (2009), Codron & Clauss (2010), Dittmann et al. (2015), Tahas et al. (subm.)



Three measures of ‘stratification’

&

>

from Clauss et al. (2009), Codron & Clauss (2010), Dittmann et al. (2015), Tahas et al. (subm.)



Three measures of ‘stratification’
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from Clauss et al. (2009), Codron & Clauss (2010), Dittmann et al. (2015), Tahas et al. (subm.)



Three measures of ‘stratification’
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from Clauss et al. (2009), Codron & Clauss (2010), Dittmann et al. (2015), Tahas et al. (subm.)



Three measures of ‘stratification’

from Clauss et al. (2009), Codron & Clauss (2010), Dittmann et al. (2015), Tahas et al. (subm.)
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R.R. Hofmann

e




Sequence of hypotheses

Soft tissue variation and forestomach physiology is

linked to
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Ruminant diversification as an adaptation to the
physicomechanical characteristics of forage.
A reevaluation of an old debate and a new hypothesis

Marcus Clauss, Matthias Lechner-Doll and W. Jiirgen Streich




Ruminant diversification as an adaptation to the
physicomechanical characteristics of forage.
A reevaluation of an old debate and a new hypothesis

Marcus Clauss, Matthias Lechner-Doll and W, Jiirgen Streich OIKOS 102: 253-262, 2003
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Differences in RR contents stratification could
mean ...

escape of larger

only small particles
escape the rumen

particles possible
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Faecal particle size distribution in captive wild ruminants:
an approach to the browser/grazer dichotomy from the other end
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The evolution of phylogenetic differences in the
efficiency of digestion in ruminants

F. J. Pérez-Barberia!’, D. A. Elston?, 1. J. Gordon'i and A. W. Illius>

NDFD
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Does digestion type influence the
filter-bed effect’?

from Lechner et al. (2010)



Does digestion type influence the
filter-bed effect’?

from Lechner et al. (2010)



Does digestion type influence the
filter-bed effect’?

from Lechner et al. (2010)



Does digestion type influence the
filter-bed effect’?
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Does digestion type influence the
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Passage kinetics of markers: ‘moose-type’
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Passage kinetics of markers: ‘moose-type’
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Passage kinetics of markers: ‘moose-type’
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Does digestion type influence the
filter-bed effect’?
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from Lechner et al. (2010)



No difference in sorting mechanism

120
'‘Browser'/'Moose-type'

100 - 'Grazer'['Cattle-type’

5]
o=

MRT ..y 20mmRR (D)
4= o
o o

2
L=

0 10 20 30 40 20 60
MRT ,.zmmRR (D)

from Clauss et al. (2010)



No difference in sorting mechanism

from Clauss et al. (2010)



No difference in sorting mechanism

from Clauss et al. (2010)



Filter-bed effect due to grass in any ruminant

from Clauss et al. (2011)



Filter-bed effect due to grass in any ruminant
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Filter-bed effect due to grass in any ruminant
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Faecal particle size in ruminants
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Differential passage of fluids and different-sized particles in fistulated oxen

(Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer

(Rangifer tarandus) and moose (Alces alces): Rumen particle size discrimination is
independent from contents stratification

Isabel Lechner?, Perry Barboza ®, William Collins©, Julia Fritz9, Detlef Giinther ¢, Bodo Hattendorf®,
Jirgen Hummel ', Karl-Heinz Siidekum ', Marcus Clauss **
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difference in salivary defence and potential
for RR microbial harvest
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Stratification and rumen papillation

Giraffe White- Bushbuck
tailed deer
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« Large salivary glands

* Protein-rich (=viscous) saliva
contains tannin-binding
proteins as a defence against
tannins

« High fluid throughput not
possible
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Stratification and rumen papillation

Giraffe White- Bushbuck Fallow deer Thomson Goat Blackbuck Pére David's African
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Stratification and rumen papillation

Blackbuck Pére David's African
deer buffalo

* Large salivary glands not
necessary

* Thin (serous) saliva
* High fluid throughput possible

« Evolution towards high fluid
throughput similar to many
other foregut fermenters

from Clauss, Hofmann et al. (2009)



Stratification and rumen papillation

Blackbuck Pére David's African
deer buffalo

* Large salivary glands not
necessary

* Thin (serous) saliva
* High fluid throughput possible

« Evolution towards high fluid
throughput similar to many
other foregut fermenters

from Clauss, Hofmann et al. (2009)



Why a higher fluid throughput?




HeRrBERT, D., ELswoRrTH, R. & TELLING, R. C. (1956). J. gen. Microbiol. 14, 601-622

The Continuous Culture of Bacteria; a Theoretical and
Experimental Study
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Why a higher fluid throughput?

A high fluid throughput increases microbial harvest
from the forestomach - microbes are washed out
faster, more energy used for microbial growth than
for microbial maintenance ...




Efficiency of Energy Utilization by Mixed

Rumen Bacteria in Continuous Culture

H. R. ISAACSON, F. C. HINDS, M. P. BRYANT, and F, N, QWENS'
Journal of Dairy Science Vol. 58, No. 11
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Why a higher fluid throughput?

A high fluid throughput increases microbial harvest
from the forestomach - microbes are washed out
faster, more energy used for microbial growth than
for microbial maintenance ...

... and reduces methane losses



Attempts to increase rumen fluid throughput

EFFECTS OF A SALIVARY STIMULANT, SLAFRAMINE, ON
RUMINAL FERMENTATION, BACTERIAL PROTEIN SYNTHESIS
AND DIGESTION IN FREQUENTLY FED STEERS'

M. A. Froetschel?, H. E. Amos2, J. J. Evans’,
W. J. Croom, Jr* and W. M. Hagler, Jr’

J. Anim. Sci. 1989. 67:827-834

With SF administration, as much as 13% more bacterial proteiri exited the rumen, resulting

in a 16.5% linear improvement (P < .1) in the efficiency of ruminal bacterial protein
production per 100 g of OM fermented.

These results demonstrate a positive relationship between
salivation and ruminal bacterial protein synthesis and suggest that feed utilization by

ruminants may be improved by pharmacological stimulation of salivary secretions.
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in a 16.5% linear improvement (P < .1) in the efficiency of ruminal bacterial protein
production per 100 g of OM fermented.

These results demonstrate a positive relationship between
salivation and ruminal bacterial protein synthesis and suggest that feed utilization by
ruminants may be improved by pharmacological stimulation of salivary secretions.




Ecological consequences
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from Hummel et al. (2015)
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Ecological consequences

model calculation for a ration of
50:50 alfalfa hay:concentrates

microbial efficiency
(microbial N g / kg fermented organic matter)

4.7 .
3 10 % 8.5

higher

from Hummel et al. (2015)



Ecological consequences

restricted to strict
browse diets

( ‘non-grazers’)

a 5 % & 3 B

broader diet
spectrum

( ‘mixed feeders/
grazers’)

from Clauss et al. (2010)



Cattle question

What is the success of the buffalo/cattle-type
anatomy/physiology?
Is it really linked

to a specific
‘grazer’ diet ?

from Hofmann (1989)



Ruminant feeding types (Hofmann)

EUROPE: RUMINANT FEEDING TYPES
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Ruminant questions

* What is the success of the buffalo/cattle-type
anatomy/physiology? —

from Hofmann (1989)



Ruminant questions

* What is the success of the buffalo/cattle-type
anatomy/physiology?

* Not a typical “grazer” adaptation but one that

evidently also facilitates mixed feeding/browse
diets:

African buffalo - Red forest buffalo

Plains bison - Wood bison - Europ. Bison
Yak - Gaur - Banteng
Muskoxen



Ruminant questions

* What is the success of the buffalo/cattle-type
anatomy/physiology?

* Not a typical “grazer” adaptation but one that

evidently also facilitates mixed feeding/browse
diets:

African buffalo - Red forest buffalo

Plains bison - Wood bison - Europ. Bison
Yak - Gaur - Banteng
Muskoxen

tradition of supplementing cattle with browse



Form & Function

* The strategy of
—Distinct contents stratification
—High rumen fluid throughput
—Large omasum

.. does not increase patrticle sorting efficiency

.. but it might:

* Enhance harvesting of forestomach microbe
populations and keeping methane losses at
bay ?



Attempts to increase rumen fluid throughput

Continuous infusion of artificial saliva in fistulated
animals
Feeding of mineral salts

Offering of isotonic fluids instead of drinking
water?

Chalupa (1977) Manipulating rumen fermentation. J Anim Sci 46, 585

Harrison & McAllan (1980) Factors affecting microbial growth yields in the reticulo-rumen. In Digestive physiology and
metabolism in ruminants (eds. Ruckebush & Thivend), p 205, MTP Press, Lancaster

Croom et al. (1993) Manipulation of gastrointestinal nutrient delivery in livestock. J Dairy Sci 76, 2112




Stratification and rumen papillation
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Stratification and rumen papillation

ventral
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Attempts to increase rumen fluid throughput

Continuous infusion of artificial saliva in fistulated
animals

Feeding of mineral salts

Offering of isotonic fluids instead of drinking
water?

... Selective breeding ?




Frothy bloat

from Cheng et al. (1998)




Frothy bloat

frothy rumen
contents

‘dry’ rumen
from Cheng et al. (1998) contents



Frothy bloat

frothy rumen
contents

‘dry’ rumen
from Cheng et al. (1998), Morris et al. (1997) contents



Frothy bloat

frothy rumen
contents
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‘dry’ rumen
from Cheng et al. (1998), Morris et al. (1997) contents



Not only different species, but different
phenotypes exist




Not only different species, but different
phenotypes exist

John P. Goopy'*, Alastair Donaldson’, Roger Hegarty?, Philip E. Vercoe™*, Fay Haynes?, Mark Barnett®
and V. Hutton Oddy’




Conclusion: ruminants and fluids

CERVIDAE

Evidence for convergent
evolution of high fluid
throughput in ruminant
lineages suggests that
benefits are substantial.

MOSCHIDAE

BOVIDAE

from Agnarsson et al. (2008)



Conclusion: ruminants and fluids

Odocoileinae
New World Deer

Capreolinae+Alcinae
New World Deer,
Water Deer + Moose

CERVIDAE

Plesiometacarpalia

MOSCHIDAE

Aepycerotinae
BOVIDAE impala,*Suni antelo

Reduncinae + Pelein
Waterbucks, Reedbu
+ Rhebok

Cephalophinae
Duikers, *Klipspri

Hippotraginae
Grazing Antelopes

L Ll

Alcelaphinae

Hartebeast,

Wilderbeast

from Agnarsson et al. (2008)



Conclusion: ruminants and fluids

CERVIDAE

Further increase of RR fluid
throughput by selective
breeding could

— increase microbial yield from
RR

— increase buffering capacity
(capacity to deal with
concentrate diets)

— reduce methane emissions

MOSCHIDAE

! | Bovinae, Cattie, Biso
N |

arge 'Antelopes’

BOVIDAE

from Agnarsson et al. (2008)



Work to be done

* Proof of concept (experiments with fistulated
animals/fluid infusions & salivary stimulation) in
which not only microbial N yield but also CH, and
complete energy budgets are measured

* Develop a proxy to identify high-fluid-throughput
phenotypes that is easier to measure than ‘mean
retention times’









